FLAC3D Theory and Background ……………………………………………………………….. #
THEORETICAL BACKGROUND ………………………………………………………………………… #
Formulation Of A 3d Explicit Finite Volume Model ……………….. #
Mathematical Model Description ……………………………………………… #
Conventions ………………………………………………………………………. #
Stress ……………………………………………………………………………….. #
Rate of Strain and Rate of Rotation ……………………………. #
Equations of Motion and Equilibrium ……………………………. #
Boundary and Initial Conditions …………………………………… #
Constitutive Equations …………………………………………………… #
Numerical Formulation ……………………………………………………………… #
Finite Volume Approximation to Space Derivatives ………. #
Nodal Formulation of the Equations of Motion ……………. #
Explicit Finite Difference Approximation to Time Derivatives …… #
Constitutive Equations in Incremental Form ……………….. #
Large- and Small-Strain Modes ………………………………………. #
Mechanical Timestep Determination for Numerical Stability …… #
Mechanical Damping ………………………………………………………….. #
Grid Discretization ………………………………………………………………………….. #
Mixed Discretization for a Hexahedral Grid ………………………… #
Nodal Mixed Discretization for a Tetrahedral Grid ……………. #
Nodal mixed discretization on strain ………………………….. #
Nodal mixed discretization on stress ………………………….. #
Numerical Implementation …………………………………………………………………. #
Body Discretization …………………………………………………………………. #
Hexahedral Meshing ………………………………………………………….. #
Tetrahedral Meshing ………………………………………………………… #
Initial and Boundary Conditions ……………………………………………. #
Main Calculation Steps ……………………………………………………………. #
Strain-Rate Calculation ………………………………………………………….. #
Stress Calculation …………………………………………………………………… #
Nodal Mass Calculation ……………………………………………………………. #
Out-of-Balance Force and Ratio Calculation ………………………… #
Maximum Out-of-Balance Force ………………………………………… #
Local Maximum Force Ratio ……………………………………………… #
Average Force Ratio ………………………………………………………… #
Maximum Force Ratio ………………………………………………………… #
Velocity and Displacement Calculations ……………………………….. #
Geometry Update Calculation …………………………………………………… #
Energy Calculation in FLAC3D …………………………………………………. #
Energy Dissipation in Zones through Plastic Work …….. #
References ………………………………………………………………………………………….. #
INTERFACES ………………………………………………………………………… #
General Comments ……………………………………………………………………………….. #
Formulation ………………………………………………………………………………………… #
Creation of Interface Geometry ………………………………………………………. #
Choice of Material Properties ………………………………………………………… #
Interface Used to Join Two Sub-grids …………………………………… #
Real Interface — Slip and Separation Only ………………………….. #
All Properties Have Physical Significance ………………………….. #
Modeling Guidelines ………………………………………………………………………….. #
Troubleshooting ………………………………………………………………………… #
Initial Stresses ………………………………………………………………………. #
Interface Corners …………………………………………………………………….. #
Overlapping Interfaces ……………………………………………………………. #
Interfaces and Fluid Flow ………………………………………………………. #
Interfaces and Changing Interacting Objects in Small Strain … #
References ………………………………………………………………………………………….. #
FACTOR OF SAFETY ………………………………………………………………………… #
Introduction ………………………………………………………………………………………. #
Factor of Safety ……………………………………………………………………………….. #
Computational Methods for Factor of Safety Calculation of Slopes … #
Strength Reduction Technique …………………………………………………. #
Limit Analysis ………………………………………………………………………….. #
Limit Equilibrium …………………………………………………………………….. #
Relation of Strength Reduction Method to Limit Equilibrium
and Limit Analysis ……………………………………………………………….. #
Strength Reduction Procedure in FLAC3D ………………………………………… #
Strength Reduction Properties ……………………………………………….. #
Mohr-Coulomb Material …………………………………………………….. #
Ubiquitous-Joint Material ……………………………………………… #
Hoek-Brown Material ………………………………………………………… #
Interfaces ………………………………………………………………………… #
Example Factor of Safety Calculations using
the Strength Reduction Method ………………………………………………………… #
Failure of a Slope with a Complex Surface Profile in a
Mohr-Coulomb Material ………………………………………………………… #
Influence of Slope Curvature on Stability ………………………… #
Simple Slope in Hoek-Brown Material …………………………………… #
Automatic Calculation of a Stable Pit Slope Angle ………….. #
Factor of Safety Contours …………………………………………………….. #
References ………………………………………………………………………………………… #
CONSTITUTIVE MODELS …………………………………………………………………………………. #
Constitutive Models in FLAC3D ………………………………………………………. #
Incremental Formulation …………………………………………………………………. #
Null Model Group ……………………………………………………………………………… #
Null Model ……………………………………………………………………………….. #
Elastic Model Group ………………………………………………………………………… #
Elastic (Isotropic) Model …………………………………………………….. #
Anisotropic (Transversely-Elastic) Model ………………………….. #
Orthotropic Elastic Model …………………………………………………….. #
Plastic Model Group ………………………………………………………………………… #
Drucker-Prager Model ……………………………………………………………… #
Mohr-Coulomb Model …………………………………………………………………. #
Ubiquitous-Joint Model ………………………………………………………….. #
Anisotropic-Elasticity Ubiquitous-Joint Model …………………. #
Strain-Softening/Hardening Mohr-Coulomb Model …………………. #
Bilinear Strain-Softening/Hardening Ubiquitous-Joint Model ….. #
Double-Yield Model …………………………………………………………………. #
Modified Cam-Clay Model ………………………………………………………… #
Hoek-Brown Model …………………………………………………………………….. #
Hoek-Brown-PAC Model ……………………………………………………………… #
Cap-Yield (CYSoil) Model ………………………………………………………. #
Simplified Cap-Yield (CHSoil) Model …………………………………… #
Plastic-Hardening Model ………………………………………………………… #
Swell Model ……………………………………………………………………………… #
Mohr-Coulomb Tension Crack (MohrT) Model ………………………….. #
Model Tests and Examples ……………………………………………………………….. #
Oedometer Test with Mohr-Coulomb Model ……………………………… #
Uniaxial Compressive Strength of a Jointed Material Sample …. #
Isotropic Consolidation Test with Double-Yield Model …….. #
Isotropic Consolidation Test with Modified Cam-Clay Model …. #
Triaxial Compression Test with Hoek-Brown Model ……………… #
Triaxial Compression Test with Hoek-Brown-PAC Model ………. #
Isotropic Compression Test with CYSoil Model …………………… #
Oedometer Test with CYSoil Model ………………………………………… #
Drained Triaxial Test with CYSoil Model — Constant Dilation ….. #
Drained Triaxial Test with CYSoil Model — Dilation Hardening ….. #
Undrained Triaxial Test with CYSoil Model ………………………… #
Drained Triaxial Compression Test with
Simplified Cap-Yield (CHSoil) Model ……………………………….. #
Comparison between Mohr-Coulomb Model and
Plastic-Hardening model …………………………………………………….. #
Isotropic Compression Test with Plastic-Hardening Model ….. #
Drained Triaxial Compression Test with Plastic-Hardening Model ….. #
Undrained Triaxial Compression Test with Plastic-Hardening Model ….. #
Oedometer Test with Plastic-Hardening Model …………………….. #
Single Zone Swell Test ………………………………………………………….. #
Single Zone Loading-Unloading Test with MohrT Model ………… #
References ………………………………………………………………………………………….. #
FLUID-MECHANCIAL INTERACTION ……………………………………………………………… #
FLAC3D Fluid-Thermal-Mechanical-Formulation —
Mathematical Description …………………………………………………………………. #
Conventions and Definitions …………………………………………………… #
Governing Differential Equations ………………………………………….. #
Fluid Flow Boundary and Initial Conditions in FLAC3D ………. #
Numerical Formulation ………………………………………………………………………. #
Saturated Fluid Flow ……………………………………………………………….. #
Finite-Volume Approximation to Space Derivatives ….. #
Nodal Formulation of the Mass Balance Equation ………… #
Explicit Finite-Volume Formulation ………………………. #
Stability Criterion ………………………………………………………… #
Implicit Finite-Volume Formulation ………………………. #
Convergence Criterion …………………………………………………….. #
Saturated/Unsaturated Flow …………………………………………………….. #
Mechanical Timestep and Numerical Stability ………………………. #
Total Stress Correction ………………………………………………………….. #
Fully Saturated Fast Flow ………………………………………………………. #
An Alternative Fast-Flow Algorithm ……………………………… #
Calculation Modes for Fluid-Mechanical Interaction …………………… #
Grid Not Configured for Fluid Flow ………………………………………. #
Grid Configured for Fluid Flow ……………………………………………… #
Properties and Units for Fluid-Flow Analysis ……………………………… #
Permeability Coefficient ………………………………………………………… #
Mass Density ……………………………………………………………………………… #
Fluid Moduli ……………………………………………………………………………… #
Biot Coefficient and Biot Modulus ……………………………….. #
Fluid Bulk Modulus ………………………………………………………….. #
Fluid Moduli and Convergence ………………………………………… #
Fluid Moduli for Drained and Undrained Analyses ………. #
Porosity …………………………………………………………………………………….. #
Saturation …………………………………………………………………………………. #
Undrained Thermal Coefficient ……………………………………………….. #
Fluid Tension Limit …………………………………………………………………. #
Fluid-Flow Boundary Conditions, Initial Conditions, Sources and Sinks ….. #
Solving Flow-Only and Coupled-Flow Problems ……………………………….. #
Time Scales ……………………………………………………………………………….. #
Selection of a Modeling Approach for a Fully Coupled Analysis ….. #
Time Scale ………………………………………………………………………… #
Nature of Imposed Perturbation to the Coupled Process ….. #
Stiffness Ratio ……………………………………………………………….. #
Recommended Procedure to Select a Modeling Approach ….. #
Fixed Pore Pressure (Used in Effective Stress Calculation) ….. #
Flow-Only Calculation to Establish a Pore-Pressure Distribution ….. #
No Flow — Mechanical Generation of Pore Pressure ……………… #
Coupled Flow and Mechanical Calculations ……………………………. #
Verification Examples ………………………………………………………………………. #
Unsteady Groundwater Flow in a Confined Layer …………………… #
One-Dimensional Filling of a Porous Region ………………………… #
Steady-State Fluid Flow with a Free Surface ………………………. #
Spreading of a Groundwater Mound ………………………………………….. #
One-Dimensional Consolidation ……………………………………………….. #
Consolidation Settlement at the Center of a Strip Load ….. #
Transient Fluid Flow to a Well in a Shallow Confined Aquifer ….. #
Pressuremeter Test …………………………………………………………………… #
Semi-confined Aquifer ……………………………………………………………… #
Verification of Concepts, and Modeling Techniques
for Specific Applications ……………………………………………………………….. #
Solid Weight, Buoyancy and Seepage Forces ………………………….. #
A Simple Example Illustrating Solid Weight, Buoyancy and
Seepage Forces …………………………………………………………………. #
Pore Pressure Initialization and Deformation …………………….. #
Heave of a Soil Layer …………………………………………………….. #
Effect of the Biot Coefficient ……………………………………………… #
Undrained Oedometer Test ……………………………………………….. #
Pore Pressure Generation in a Confined Sample ………….. #
Pore Pressure Generation in an Infinite Layer ………….. #
Input Instructions for Fluid-Flow Analysis …………………………………. #
Fluid Commands ………………………………………………………………………….. #
Fluid FISH Variables ……………………………………………………………….. #
Zone-Based Pore Pressure ………………………………………………………… #
References ………………………………………………………………………………………….. #