Stress/Strain Invariants
In FLAC, assuming sij is the deviatoric part of the stress tensor σij, and eij is the deviatoric part of the strain tensor εij, the stress/strain invariants in FLAC are defined and summarized in Table 1.
For example, in a triaxial compression test, the cell pressure in the xy-plane is 100, the vertical compression pressure in the z-direction is 400, the stress tensor in the sample is thus
According to equations in Table 1, we have
I1=−600,I2=9e4,I3=−4e6σv=−600,σm=−200,eij={sxx,syy,szz,sxy,syz,sxz}={100,100,−200,0,0,0},J1=0,J2=3e4,J3=−2e6,θσ=π/6,σ1=−400,σ2=σ3=−100,σeq=q=300,σoct=100√2,τmax=100,σnorm=300√2, andσtm=300√2.
Stress Invariant |
Definition |
Strain Invariant |
Definition |
---|---|---|---|
1st stress invariant |
I1=σkk |
1st strain invariant |
I′1=εkk |
2nd stress invariant |
I2=(σxxσyy+σyyσzz+σzzσxx)−(σxyσyz+σyzσzx+σzxσxy) |
2nd strain invariant |
I′2=(εxxεyy+εyyεzz+εzzεxx)−(εxyεyz+εyzεzx+εzxεxy) |
3rd stress invariant |
I3=|σij| |
3rd strain invariant |
I′3=|εij| |
volumetric stress |
σv=σkk |
volumetric strain |
εv=εkk |
mean stress |
σm=σkk/3 |
mean strain |
εm=εkk/3 |
1st deviatoric stress invariant |
J1≡0 |
1st deviatoric strain invariant |
J′1≡0 |
2nd deviatoric stress invariant |
J2=(sijsij)/2 |
2nd deviatoric strain invariant |
J′2=(eijeij)/2 |
3rd deviatoric stress invariant |
J3=(sijsikski)/3 |
3rd deviatoric strain invariant |
J′3=(eijeikeki)/3 |
stress Lode’s angle |
θσ=13arcsin(−3√32J3J1.52) |
strain Lode’s angle |
θε=13arcsin(−3√32J′3J′1.52) |
minimum principal stress |
σ1=2√3√J2sin(θσ−23π)+σm |
minimum principal strain |
ε1=2√3√J′2sin(θε−23π)+εm |
intermediate principal stress |
σ2=2√3√J2sin(θσ)+σm |
intermediate principal strain |
ε2=2√3√J′2sin(θε)+εm |
maximum principal stress |
σ3=2√3√J2sin(θσ+23π)+σm |
maximum principal strain |
ε3=2√3√J′2sin(θε+23π)+εm |
von Mises equivalent stress |
σeq=√3J2 |
von Mises equivalent strain |
εeq=√43J′2 |
equivalent deviatoric stress |
q=√3J2 |
equivalent (engineering) shear strain |
γ=√4J′2 |
octahedral stress |
σoct=√23J2 |
octahedral strain |
εoct=√83J′2 |
maximum shear stress |
τmax=(σ3−σ1)/2 |
maximum shear strain |
γmax=ε3−ϵ1 |
stress norm |
σnorm=√σijσij |
strain norm |
εnorm=√εijεij |
stress total measure |
σtm=√σ21+σ22+σ23=√I21/3+2J2 |
strain total measure |
εtm=√ε21+ε22+ε23=√I′21/3+2J′2 |
Was this helpful? ... | Itasca Software © 2024, Itasca | Updated: Feb 07, 2025 |