Stress/Strain Invariants

In FLAC, assuming sij is the deviatoric part of the stress tensor σij, and eij is the deviatoric part of the strain tensor εij, the stress/strain invariants in FLAC are defined and summarized in Table 1.

For example, in a triaxial compression test, the cell pressure in the xy-plane is 100, the vertical compression pressure in the z-direction is 400, the stress tensor in the sample is thus

σij={σxx,σyy,σzz,σxy,σyz,σxz}={100,100,400,0,0,0}

According to equations in Table 1, we have


I1=600,
I2=9e4,
I3=4e6
σv=600,
σm=200,
eij={sxx,syy,szz,sxy,syz,sxz}={100,100,200,0,0,0},
J1=0,
J2=3e4,
J3=2e6,
θσ=π/6,
σ1=400,
σ2=σ3=100,
σeq=q=300,
σoct=1002,
τmax=100,
σnorm=3002, and
σtm=3002.

Table 1: Stress/Strain Invariants

Stress Invariant

Definition

Strain Invariant

Definition

1st stress invariant

I1=σkk

1st strain invariant

I1=εkk

2nd stress invariant

I2=(σxxσyy+σyyσzz+σzzσxx)(σxyσyz+σyzσzx+σzxσxy)

2nd strain invariant

I2=(εxxεyy+εyyεzz+εzzεxx)(εxyεyz+εyzεzx+εzxεxy)

3rd stress invariant

I3=|σij|

3rd strain invariant

I3=|εij|

volumetric stress

σv=σkk

volumetric strain

εv=εkk

mean stress

σm=σkk/3

mean strain

εm=εkk/3

1st deviatoric stress invariant

J10

1st deviatoric strain invariant

J10

2nd deviatoric stress invariant

J2=(sijsij)/2

2nd deviatoric strain invariant

J2=(eijeij)/2

3rd deviatoric stress invariant

J3=(sijsikski)/3

3rd deviatoric strain invariant

J3=(eijeikeki)/3

stress Lode’s angle

θσ=13arcsin(332J3J1.52)

strain Lode’s angle

θε=13arcsin(332J3J1.52)

minimum principal stress

σ1=23J2sin(θσ23π)+σm

minimum principal strain

ε1=23J2sin(θε23π)+εm

intermediate principal stress

σ2=23J2sin(θσ)+σm

intermediate principal strain

ε2=23J2sin(θε)+εm

maximum principal stress

σ3=23J2sin(θσ+23π)+σm

maximum principal strain

ε3=23J2sin(θε+23π)+εm

von Mises equivalent stress

σeq=3J2

von Mises equivalent strain

εeq=43J2

equivalent deviatoric stress

q=3J2

equivalent (engineering) shear strain

γ=4J2

octahedral stress

σoct=23J2

octahedral strain

εoct=83J2

maximum shear stress

τmax=(σ3σ1)/2

maximum shear strain

γmax=ε3ϵ1

stress norm

σnorm=σijσij

strain norm

εnorm=εijεij

stress total measure

σtm=σ21+σ22+σ23=I21/3+2J2

strain total measure

εtm=ε21+ε22+ε23=I21/3+2J2