Systems of Units for Thermal Analysis

All thermal quantities must be given in a consistent system of units. No conversions are performed by the program. Table 1 and Table 2 present examples of consistent sets of units for thermal parameters.

Table 1: System of SI units for thermal problems

Length

m

m

m

cm

Density

kg/m3

103 kg/m3

106 kg/m3

106 g/cm3

Stress

Pa

kPa

MPa

bar

Temperature

K

K

K

K

Time

s

s

s

s

Specific Heat

J/(kg K)

10-3 J/(kg K)

10-6 J/(kg K)

10-6 cal/(g K)

Thermal Conductivity

(W/mK)

(W/mK)

(W/mK)

(cal/s)/cm2 K4

Convective Heat-Trans. Coefficient

(W/m2 K)

(W/m2 K)

(W/m2 K)

(cal/s)/(cm2 K)

Radiative Heat-Trans. Coefficient

(W/m2 K4)

(W/m2 K4)

(W/m2 K4)

(cal/s)/cm2 K4

Flux Strength

W/m2

W/m2

W/m2

(cal/s)/cm2

Source Strength

W/m3

W/m3

W/m3

(cal/s)/cm3

Decay Constant

s-1

s-1

s-1

s-1

Table 2: System of imperial units for thermal problems

Length

ft

in

Density

slugs/ft3

snails/in3

Stress

lbf

psi

Temperature

R

R

Time

hr

hr

Specific Heat

(32.17)-1 Btu/(lb R)

(32.17)-1 Btu/(lb R)

Thermal Conductivity

(Btu/hr)/(ft R)

(Btu/hr)/(in R)

Convective Heat-Trans. Coefficient

(Btu/hr)/(ft2 R)

(Btu/hr)/(in2 R)

Radiative Heat-Trans. Coefficient

(Btu/hr)/(ft2 R4)

(Btu/hr)/(in2 R4)

Flux Strength

(Btu/hr)/ft2

(Btu/hr)/in2

Source Strength

(Btu/hr)/ft3

(Btu/hr)/in3

Decay Constant

hr-1

hr-1

where:

1K

= 1.8 R;

1J

= 0.239 cal = 9.48 × 10-4 Btu;

1J/kg K

= 2.39 × 10-4 btu/lb R;

1W

= 1 J/s = 0.239 cal/s = 3.412 Btu/hr;

1W/m K

= 0.578 Btu/(ft/hr R); and

1W/m2 K

= 0.176 Btu/ft2 hr R.

Note that temperatures may be quoted in the more common units of °C (instead of K) or °F (instead of R), where:

Temp(°C)

= [Temp(°F) - 32]×(5/9);

Temp(°F)

= [1.8 Temp(°C) + 32];

Temp(°C)

= Temp(K) - 273; and

Temp(°F)

= Temp(R) - 460.