EEPA Model Properties
The properties of the Edinburgh-Elasto-Plastic-Adhesive (EEPA) Contact Model model are shown below for reference. See the properties table in the EEPA “Properties” section for full details for each property.
Note
Read-only properties are indicated by (r) at right in this listing.
- adh_exp f
\(\chi\) - adhesive branch exponent with default value 1.5.
- dp_force v (r)
\(\mathbf{F^{d}}\) - dashpot force. Expressed in the contact plane coordinate system.
- dp_mode i
\(M_d\) - dashpot mode with default value 0.
- dp_nratio f
\(\beta_n\)- normal critical damping ratio with default value 0.0.
- dp_sratio f
\(\beta_s\) - shear critical damping ratio with default value 0.0.
- eepa_force v
\(\mathbf{F^{EEPA}}\) - EEPA force with default value \(\mathbf{0}\). Expressed in the contact plane coordinate system.
- eepa_poiss f
\(\nu\) - poisson’s ratio with default value 0.0.
- eepa_shear f
\(G\) - shear modulus in units of stress with default value 0.0.
- eepa_slip b (r)
\(s\) - sliding slip state.
- force_min f
\(f_{min}\) - minimum force with default value 1.5.
- fric f
\(\mu\) - sliding friction coefficient with default value 0.0.
- ks_fac f
\(k_{sf}\) - shear stiffness scaling factor with default value 1.0.
- lu_exp f
\(m\) - loading-unloading branch exponent with default value 1.5.
- overlap_max f (r)
\(\delta_{max}\) - maximum overlap.
- plas_ratio f (r)
\(\lambda_p\) - plasticity ratio with default value 0.5.
- pull_off f (r)
\(F^0\) - pull-off force.
- rgap f
\(g_r\) - reference gap in units length with default value 0.0.
- rr_fric f
\(\mu_r\) - rolling friction coefficient with default value 0.0.
- rr_moment v
\(\mathbf{M^r}\) - Rolling resistance moment with default value \(\mathbf{0}\). Expressed in the contact plane coordinate system.
- rr_slip b (r)
\(s_r\) - rolling slip state.
- surf_adh f
\(\gamma^*\) - Effective surface adhesion energy with default value 0.0.
⇐ Edinburgh-Elasto-Plastic-Adhesive (EEPA) Contact Model | Johnson-Kendall-Roberts (JKR) Contact Model ⇒
Was this helpful? ... | Itasca Software © 2024, Itasca | Updated: Dec 19, 2024 |