Stress/Strain Invariants
In FLAC, assuming \(s_{ij}\) is the deviatoric part of the stress tensor \(\sigma_{ij}\), and \(e_{ij}\) is the deviatoric part of the strain tensor \(\varepsilon_{ij}\), the stress/strain invariants in FLAC are defined and summarized in Table 1.
For example, in a triaxial compression test, the cell pressure in the \(xy\)-plane is 100, the vertical compression pressure in the \(z\)-direction is 400, the stress tensor in the sample is thus
According to equations in Table 1, we have
\(I_1 = -600\),\(I_2 = 9e4\),\(I_3 = -4e6\)\(\sigma_v = -600\),\(\sigma_m = -200\),\(e_{ij} = \{s_{xx}, s_{yy}, s_{zz}, s_{xy}, s_{yz}, s_{xz} \} = \{100,100,-200,0,0,0\}\),\(J_1 = 0\),\(J_2 = 3e4\),\(J_3 = -2e6\),\(\theta_{\sigma} = \pi/6\),\(\sigma_1 = -400\),\(\sigma_2 = \sigma_3 = -100\),\(\sigma_{eq} = q = 300\),\(\sigma_{oct} = 100\sqrt{2}\),\(\tau_{max} = 100\),\(\sigma_{norm} = 300\sqrt{2}\), and\(\sigma_{tm} = 300\sqrt{2}\).
Stress Invariant |
Definition |
Strain Invariant |
Definition |
---|---|---|---|
1st stress invariant |
\(I_1 = \sigma_{kk}\) |
1st strain invariant |
\(I'_1 = \varepsilon_{kk}\) |
2nd stress invariant |
\(I_2 = (\sigma_{xx}\sigma_{yy}+\sigma_{yy}\sigma_{zz}+\sigma_{zz}\sigma_{xx}) \\- (\sigma_{xy}\sigma_{yz}+\sigma_{yz}\sigma_{zx}+\sigma_{zx}\sigma_{xy})\) |
2nd strain invariant |
\(I'_2 = (\varepsilon_{xx}\varepsilon_{yy}+\varepsilon_{yy}\varepsilon_{zz}+\varepsilon_{zz}\varepsilon_{xx}) \\- (\varepsilon_{xy}\varepsilon_{yz}+\varepsilon_{yz}\varepsilon_{zx}+\varepsilon_{zx}\varepsilon_{xy})\) |
3rd stress invariant |
\(I_3 = |\sigma_{ij}|\) |
3rd strain invariant |
\(I'_3 = |\varepsilon_{ij}|\) |
volumetric stress |
\(\sigma_v = \sigma_{kk}\) |
volumetric strain |
\(\varepsilon_{v} = \varepsilon_{kk}\) |
mean stress |
\(\sigma_m = \sigma_{kk}/3\) |
mean strain |
\(\varepsilon_{m} = \varepsilon_{kk}/3\) |
1st deviatoric stress invariant |
\(J_1 \equiv 0\) |
1st deviatoric strain invariant |
\(J'_1 \equiv 0\) |
2nd deviatoric stress invariant |
\(J_2 = (s_{ij}s_{ij})/2\) |
2nd deviatoric strain invariant |
\(J'_2 = (e_{ij}e_{ij})/2\) |
3rd deviatoric stress invariant |
\(J_3 = (s_{ij}s_{ik}{s_{ki}})/3\) |
3rd deviatoric strain invariant |
\(J'_3 = (e_{ij}e_{ik}{e_{ki}})/3\) |
stress Lode’s angle |
\(\theta_{\sigma} = {{1} \over {3}} \arcsin{\left( -{{3\sqrt{3}} \over {2}} {{J_3} \over {J^{1.5}_2}} \right)}\) |
strain Lode’s angle |
\(\theta_{\varepsilon} = {{1} \over {3}} \arcsin{\left(- {{3\sqrt{3}} \over {2}} {{J'_3} \over {J'^{1.5}_2}} \right)}\) |
minimum principal stress |
\(\sigma_1 = {2\over{\sqrt{3}}}\sqrt{J_2}\sin{(\theta_{\sigma} - {2\over{3}}\pi)} + \sigma_m\) |
minimum principal strain |
\(\varepsilon_1 = {2\over{\sqrt{3}}}\sqrt{J'_2}\sin{(\theta_{\varepsilon} - {2\over{3}}\pi)} + \varepsilon_m\) |
intermediate principal stress |
\(\sigma_2 = {2\over{\sqrt{3}}}\sqrt{J_2}\sin{(\theta_{\sigma})} + \sigma_m\) |
intermediate principal strain |
\(\varepsilon_2 = {2\over{\sqrt{3}}}\sqrt{J'_2}\sin{(\theta_{\varepsilon})} + \varepsilon_m\) |
maximum principal stress |
\(\sigma_3 = {2\over{\sqrt{3}}}\sqrt{J_2}\sin{(\theta_{\sigma} + {2\over{3}}\pi)} + \sigma_m\) |
maximum principal strain |
\(\varepsilon_3 = {2\over{\sqrt{3}}}\sqrt{J'_2}\sin{(\theta_{\varepsilon} + {2\over{3}}\pi)} + \varepsilon_m\) |
von Mises equivalent stress |
\(\sigma_{eq} = \sqrt{3 J_2}\) |
von Mises equivalent strain |
\(\varepsilon_{eq} = \sqrt{{{4}\over{3}}J'_2}\) |
equivalent deviatoric stress |
\(q = \sqrt{3 J_2}\) |
equivalent (engineering) shear strain |
\(\gamma = \sqrt{4 J'_2}\) |
octahedral stress |
\(\sigma_{oct} = \sqrt{{{2}\over{3}}J_2}\) |
octahedral strain |
\(\varepsilon_{oct} = \sqrt{{{8}\over{3}}J'_2}\) |
maximum shear stress |
\(\tau_{max} = (\sigma_3 - \sigma_1)/2\) |
maximum shear strain |
\(\gamma_{max} = \varepsilon_3 - \epsilon_1\) |
stress norm |
\(\sigma_{norm} = \sqrt{\sigma_{ij}\sigma_{ij}}\) |
strain norm |
\(\varepsilon_{norm} = \sqrt{\varepsilon_{ij}\varepsilon_{ij}}\) |
stress total measure |
\(\sigma_{tm} = \sqrt{\sigma_1^2+\sigma_2^2+\sigma_3^2} = \sqrt{I_1^2/3+2J_2}\) |
strain total measure |
\(\varepsilon_{tm} = \sqrt{\varepsilon_1^2+\varepsilon_2^2+\varepsilon_3^2} = \sqrt{I_1^{'2}/3+2J'_2}\) |
Was this helpful? ... | Itasca Software © 2024, Itasca | Updated: Dec 19, 2024 |