Flat-Joint Model Implementation
See this page for the documentation of this contact model.
contactmodelflatjoint.h
1#pragma once
2// contactmodelflatjoint.h
3
4#include "contactmodel/src/contactmodelmechanical.h"
5
6#ifdef FLATJOINT_LIB
7# define FLATJOINT_EXPORT EXPORT_TAG
8#elif defined(NO_MODEL_IMPORT)
9# define FLATJOINT_EXPORT
10#else
11# define FLATJOINT_EXPORT IMPORT_TAG
12#endif
13
14namespace cmodelsxd {
15 using namespace itasca;
16
17 class ContactModelFlatJoint : public ContactModelMechanical {
18 public:
19 enum PropertyKeys {
20 kwFjNr=1
21 , kwFjElem
22 , kwFjKn
23 , kwFjKs
24 , kwFjFric
25 , kwFjEmod
26 , kwFjKRatio
27 , kwFjRmul
28 , kwFjRadius
29 , kwFjGap0
30 , kwFjTen
31 , kwFjCoh
32 , kwFjFa
33 , kwFjF
34 , kwFjM
35 , kwFjState
36 , kwFjSlip
37 , kwFjMType
38 , kwFjA
39 , kwFjEgap
40 , kwFjGap
41 , kwFjNstr
42 , kwFjSstr
43 , kwFjSs
44#ifdef THREED
45 , kwFjNa
46#endif
47 , kwFjRelBr
48 , kwFjCen
49 , kwFjTrack
50 , kwUserArea
51 , kwFjCohRes
52 , kwFjResMode
53 };
54
55 FLATJOINT_EXPORT ContactModelFlatJoint();
56 FLATJOINT_EXPORT ContactModelFlatJoint(const ContactModelFlatJoint &) noexcept;
57 FLATJOINT_EXPORT const ContactModelFlatJoint & operator=(const ContactModelFlatJoint &);
58 FLATJOINT_EXPORT void addToStorage(poly::vector<ContactModelMechanical> *s,int ww = -1) override;
59 FLATJOINT_EXPORT virtual ~ContactModelFlatJoint();
60 void copy(const ContactModel *c) override;
61 void archive(ArchiveStream &) override;
62 QString getName() const override { return "flatjoint"; }
63 void setIndex(int i) override { index_=i;}
64 int getIndex() const override {return index_;}
65 QString getProperties() const override { return "fj_nr"
66 ",fj_elem"
67 ",fj_kn"
68 ",fj_ks"
69 ",fj_fric"
70 ",fj_emod"
71 ",fj_kratio"
72 ",fj_rmul"
73 ",fj_radius"
74 ",fj_gap0"
75 ",fj_ten"
76 ",fj_coh"
77 ",fj_fa"
78 ",fj_force"
79 ",fj_moment"
80 ",fj_state"
81 ",fj_slip"
82 ",fj_mtype"
83 ",fj_area"
84 ",fj_egap"
85 ",fj_gap"
86 ",fj_sigma"
87 ",fj_tau"
88 ",fj_shear"
89#ifdef THREED
90 ",fj_nal"
91#endif
92 ",fj_relbr"
93 ",fj_cen"
94 ",fj_track"
95 ",user_area"
96 ",fj_cohres"
97 ",fj_resmode"
98 ;}
99
100 enum EnergyKeys { kwEStrain=1,kwESlip};
101 QString getEnergies() const { return "energy-strain,energy-slip";}
102 double getEnergy(uint32 i) const override; // Base 1
103 bool getEnergyAccumulate(uint32 i) const override; // Base 1
104 void setEnergy(uint32 i,const double &d) override; // Base 1
105 void activateEnergy() override { if (energies_) return; energies_ = NEW Energies();}
106 bool getEnergyActivated() const override {return (energies_ !=0);}
107
108 enum FishCallEvents {fActivated=0,fBondBreak,fBroken,fSlipChange};
109 QString getFishCallEvents() const override { return "contact_activated,bond_break,broken,all_slip_change"; }
110 QVariant getProperty(uint32 i,const IContact *) const override;
111 bool getPropertyGlobal(uint32 i) const override;
112 bool setProperty(uint32 i,const QVariant &v,IContact *) override;
113 bool getPropertyReadOnly(uint32 i) const override;
114
115 bool supportsInheritance(uint32 ) const override { return false; }
116
117 enum MethodKeys { kwBond=1, kwUnbond, KwDeformability, KwUpdateGeom, kwArea, kwInitialize};
118
119 QString getMethods() const override { return "bond"
120 ",unbond"
121 ",deformability"
122 ",update_geometry"
123 ",area"
124 ",initialize"
125 ;}
126
127 QString getMethodArguments(uint32 i) const override;
128
129 bool setMethod(uint32 i,const QVector<QVariant> &vl,IContact *con=0) override; // Base 1 - returns true if timestep contributions need to be updated
130
131 uint32 getMinorVersion() const override;
132
133 bool validate(ContactModelMechanicalState *state,const double ×tep) override;
134 bool endPropertyUpdated(const QString &,const IContactMechanical *) override { return false; }
135 bool forceDisplacementLaw(ContactModelMechanicalState *state,const double ×tep) override;
136 bool thermalCoupling(ContactModelMechanicalState*, ContactModelThermalState*, IContactThermal*, const double&) override;
137 DVect2 getEffectiveTranslationalStiffness() const override { return effectiveTranslationalStiffness(); }
138 DAVect getEffectiveRotationalStiffness() const override { return effectiveRotationalStiffness(); }
139
140 ContactModelFlatJoint *clone() const override { return NEW ContactModelFlatJoint(); }
141 double getActivityDistance() const override {return 0.0;}
142 bool isOKToDelete() const override { return !isBonded(); }
143 void resetForcesAndMoments() override { fj_f(DVect(0.0)); fj_m(DAVect(0.0)); for (int i=0; i<f_.size(); ++i) f_[i] = DVect(0.0); }
144 void setForce(const DVect &v,IContact *) override;
145 void setArea(const double &d) override { userArea_ = d; }
146 double getArea() const override { return userArea_; }
147 bool checkActivity(const double &inGap) override;
148
149 /// Return the total force that the contact model holds.
150 DVect getForce() const override;
151 /// Return the total moment on 1 that the contact model holds
152 DAVect getMomentOn1(const IContactMechanical*) const override;
153 /// Return the total moment on 1 that the contact model holds
154 DAVect getMomentOn2(const IContactMechanical*) const override;
155
156 DAVect getModelMomentOn1() const override;
157 DAVect getModelMomentOn2() const override;
158
159 // Used to efficiently get properties from the contact model for the object pane.
160 // List of properties for the object pane, comma separated.
161 // All properties will be cast to doubles for comparison. No other comparisons
162 // are supported. This may not be the same as the entire property list.
163 // Return property name and type for plotting.
164 void objectPropsTypes(std::vector<std::pair<QString,InfoTypes>> *) const override;
165 // All properties cast to doubles - this is what can be compared.
166 void objectPropValues(std::vector<double> *,const IContact *) const override;
167
168 //virtual bool isSliding() const { return fj_s_; }
169 bool isBonded() const override { FOR(it,bmode_) if ((*it) == 3) return true; return false; }
170 void unbond() override { FOR(it,bmode_) *it = 0; }
171
172 // For contact specific plotting
173 void getSphereList(const IContact* con, std::vector<DVect>* pos, std::vector<double>* rad, std::vector<double>* val) override;
174#ifdef THREED
175 void getDiskList(const IContact* con, std::vector<DVect>* pos, std::vector<DVect>* normal, std::vector<double>* radius, std::vector<double>* val) override;
176#endif
177 void getCylinderList(const IContact* con, std::vector<DVect>* bot, std::vector<DVect>* top, std::vector<double>* radlow, std::vector<double>* radhi, std::vector<double>* val) override;
178
179 int fj_nr() const {return fj_nr_;}
180 void fj_nr(int d) { fj_nr_= d;}
181#ifdef THREED
182 int fj_n() const { return fj_na_ * fj_nr_; }
183 int fj_na() const {return fj_na_;}
184 void fj_na(int d) { fj_na_= d;}
185#else
186 int fj_n() const { return fj_nr_; }
187#endif
188 int fj_elem() const {return fj_elem_;}
189 void fj_elem(int d) { fj_elem_= d;}
190 const double & fj_kn() const {return fj_kn_;}
191 void fj_kn(const double &d) { fj_kn_ = d;}
192 const double & fj_ks() const {return fj_ks_;}
193 void fj_ks(const double &d) { fj_ks_ = d;}
194 const double & fj_fric() const {return fj_fric_;}
195 void fj_fric(const double &d) { fj_fric_ = d;}
196 const double & fj_rmul() const {return fj_rmul_;}
197 void fj_rmul(const double &d) { fj_rmul_ = d;}
198 const double & fj_gap0() const {return fj_gap0_;}
199 void fj_gap0(const double &d) { fj_gap0_ = d;}
200 const double & fj_ten() const {return fj_ten_;}
201 void fj_ten(const double &d) { fj_ten_ = d;}
202 const double & fj_coh() const {return fj_coh_;}
203 void fj_coh(const double &d) { fj_coh_ = d;}
204 const double & fj_cohres() const {return fj_cohres_;}
205 void fj_cohres(const double &d) { fj_cohres_ = d;}
206 const double & fj_fa() const {return fj_fa_;}
207 void fj_fa(const double &d) { fj_fa_ = d;}
208 const DVect & fj_f() const {return fj_f_;}
209 void fj_f(const DVect &f) { fj_f_=f;}
210 const DAVect & fj_m() const {return fj_m_;}
211 void fj_m(const DAVect &f) { fj_m_=f;}
212 const DAVect & fj_m_set() const {return fj_m_set_;}
213 void fj_m_set(const DAVect &f) { fj_m_set_=f;}
214 const double & rmin() const {return rmin_;}
215 void rmin(const double &d) { rmin_ = d;}
216 const double & rbar() const {return rbar_;}
217 void rbar(const double &d) { rbar_ = d;}
218 const int & fj_resmode() const {return fj_resmode_;}
219 void fj_resmode(const int &i) { fj_resmode_ = i;}
220 const double & atot() const {return atot_;}
221 void atot(const double &d) { atot_ = d;}
222 bool propsFixed() const {return propsFixed_; }
223 void propsFixed(bool d) { propsFixed_ = d;}
224 int mType() const {return mType_; }
225 void mType(int d) { mType_ = d;}
226 const DVect & gap() const {return gap_; }
227 void gap(const DVect &d) { gap_ = d;}
228 const double & theta() const {return theta_; }
229 void theta(const double & d) { theta_ = d;}
230#ifdef THREED
231 const double & thetaM() const {return thetaM_; }
232 void thetaM(const double & d) { thetaM_ = d;}
233#else
234 double thetaM() const {return 0.0;}
235#endif
236
237 bool hasEnergies() const {return energies_ ? true:false;}
238 double estrain() const {return hasEnergies() ? energies_->estrain_: 0.0;}
239 void estrain(const double &d) { if(!hasEnergies()) return; energies_->estrain_=d;}
240 double eslip() const {return hasEnergies() ? energies_->eslip_: 0.0;}
241 void eslip(const double &d) { if(!hasEnergies()) return; energies_->eslip_=d;}
242
243 uint32 inheritanceField() const {return inheritanceField_;}
244 void inheritanceField(uint32 i) {inheritanceField_ = i;}
245
246 const DVect2 & effectiveTranslationalStiffness() const {return effectiveTranslationalStiffness_;}
247 void effectiveTranslationalStiffness(const DVect2 &v ) {effectiveTranslationalStiffness_=v;}
248 const DAVect & effectiveRotationalStiffness() const {return effectiveRotationalStiffness_;}
249 void effectiveRotationalStiffness(const DAVect &v ) {effectiveRotationalStiffness_=v;}
250
251 private:
252 static int index_;
253
254 struct Energies {
255 Energies() : estrain_(0.0), eslip_(0.0) {}
256 double estrain_; // elastic energy stored in contact
257 double eslip_; // work dissipated by friction
258 };
259
260 void updateEffectiveStiffness(ContactModelMechanicalState *state);
261
262 // inheritance fields
263 uint32 inheritanceField_;
264
265 int fj_nr_ = 2; // radial number of elements >= 1 (total in 2D)
266#ifdef THREED
267 int fj_na_ = 4; // circumferential number of elements >= 3
268#endif
269 int fj_elem_ = 1; // Element to be queried
270 double fj_kn_ = 0.0; // normal stiffness
271 double fj_ks_ = 0.0; // shear stiffness
272 double fj_fric_ = 0.0; // Coulomb friction coefficient
273 double fj_rmul_ = 1.0; // Radius multiplier
274 double fj_gap0_ = 0.0; // Initial gap
275 double fj_ten_ = 0.0; // Tensile strength
276 double fj_coh_ = 0.0; // Cohesive strength
277 double fj_cohres_ = 0.0; // Residual cohesive strength
278 double fj_fa_ = 0.0; // Friction angle
279 DVect fj_f_ = DVect(0.0); // Force carried in the model
280 DAVect fj_m_ = DAVect(0.0); // Moment carried in the model
281 DAVect fj_m_set_ = DAVect(0.0); // When initializing forces then need an extra moment term
282 // Area related quantities
283 double rmin_ = 1.0; // min(Ra,Rb) where Ra & Rb are particle radii
284 double rbar_ = 0.0; // flat-joint radius [m]
285 double atot_ = 0.0; // flat-joint area [m^2]
286 std::vector<double> a_ = std::vector<double>(2); // cross-sectional area of elem[fj_elem-1] [m^2]
287#ifdef THREED
288 std::vector<DVect2> rBarl_= std::vector<DVect2>(2); // centroid relative position of elem[fj_elem-1] [m] (3D)
289#else
290 std::vector<double> rBarl_ = std::vector<double>(2); // centroid relative position of elem[fj_elem-1] [m] (2D)
291#endif
292 int fj_resmode_ = 0; // Residual mode
293 void setAreaQuantities(); // Set Rbar, Atot and A[]
294 DVect getRelElemPos(const IContact*,int ) const; // Return the relative location of element i
295 void setRelElemPos(const IContact*,int ,const DVect &); // Set the relative location of element i
296
297 bool propsFixed_ = false; // {Rmul, N, G, bstate, mType} fixed, cannot reset
298 int mType_ = 3; // initial microstructural type
299 int getmType() const; // {1,2,3,4}={bonded, gapped, slit, other}
300
301 std::vector<int> bmode_ = std::vector<int>(2); // bond mode - 0 unbonded, 1 failed in tension, 2 failed in shear, 3 bonded
302 std::vector<bool> smode_ = std::vector<bool>(2); // slip mode
303 bool Bonded(int e) const { return bmode_[e-1] == 3 ? true : false; }
304
305 // Set bstate and bmode (can only bond if fj_gap0_==0.0)
306 void bondElem(int iSeg,bool bBond);
307 // Set bstate & bmode
308 void breakBond(int iSeg,int fmode,ContactModelMechanicalState *state);
309 void slipChange(int iSeg,bool smode,ContactModelMechanicalState *state);
310
311 // For use in 2D only!
312 double tauC(const double &dSig,bool bBonded) const; // shear strength (positive) [N/m^2]
313
314 // INTERFACE RESPONSE QUANTITIES:
315 DVect gap_ = DVect(0.0); // total relative displacement [m]
316 double theta_ = 0.0; // total relative rotation [rad]
317#ifdef THREED
318 double thetaM_ = 0.0; // total relative rotation [rad]
319 double thbMag() const { return sqrt(theta_*theta_ + thetaM_*thetaM_); }
320 // unit-vector xi of middle surface system xi-eta
321 // (If both thb_l and thb_m are zero, then xi is undefined
322 // and returns zero for both components.)
323 double xi(int comp /* component (l,m) = (1,2) */) const;
324#endif
325 std::vector<double> egap_ = std::vector<double>(2); // gap at centroid of elem[fj_elem-1] [N]
326 std::vector<DVect> f_ = std::vector<DVect>(2); // force on elem[fj_elem-1] [N]
327
328 void initVectors(); // Resize and zero all vector types based on current value of N
329#ifdef TWOD
330 double gap(const double &x) const; // Gap (g>0 is open) along the interface, x in [0, 2*Rbar]
331#else
332 double gap(const double &rl,const double &rm) const; // Gap (g>0 is open) gap at relative position (l,m) [m]
333 double sigBar( int e /* element, e = 1,2,...,Nel */ ) const; // normal stress at centroid of elem[eN-1] [N/m^2]
334 double tauBar( int e /* element, e = 1,2,...,Nel */ ) const; // shear stress at centroid of elem[eN-1] [N/m^2]
335#endif
336 double computeStrainEnergy(int e /* element, e = 1,2,...,Nel */) const; // strain energy in elem[eN-1]
337 // For use in 2D only! Segment normal stress
338 double computeSig(const double &g0, /* gap at left end */
339 const double &g1, /* gap at right end */
340 const double &rbar, /* length is 2*rbar */
341 const double &dA, /* area */
342 bool bBonded /* bond state */
343 ) const;
344 // For use in 2D only! Segment moment
345 double computeM(const double &g0, /* gap at left end */
346 const double &g1, /* gap at right end */
347 const double &rbar, /* length is 2*rbar */
348 bool bBonded /* bond state */
349 ) const;
350 // For use in 2D only! getCase used by ComputeSig and ComputeM
351 int getCase(const double &g0, /* gap at left end */
352 const double &g1 /* gap at right end */
353 ) const;
354 // Segment elastic shear-displacement increment, which is portion of
355 // increment that occurs while gap is negative.
356 double delUse(const double &gapStart, /* gap at start of FDlaw */
357 const double &gapEnd, /* gap at end of FDlaw */
358 bool bBonded, /* bond state */
359 const double &delUs /* shear displ. increment */
360 ) const;
361 double userArea_ = 0.0; // Area as specified by the user
362 Energies * energies_ = nullptr; // energies
363
364 DVect2 effectiveTranslationalStiffness_ = DVect2(0.0);
365 DAVect effectiveRotationalStiffness_ = DAVect(0.0);
366
367 struct orientProps {
368 orientProps() : origNormal_(DVect(0.0)) {}
369 Quat orient1_;
370 Quat orient2_;
371 DVect origNormal_;
372 };
373
374 orientProps *orientProps_ = nullptr;
375 };
376} // namespace itascaxd
377
378
379// EoF
contactmodelflatjoint.cpp
1// contactmodelflatjoint.cpp
2#include "contactmodelflatjoint.h"
3
4#include "../version.txt"
5#include "fish/src/parameter.h"
6#include "utility/src/tptr.h"
7#include "shared/src/mathutil.h"
8#include "baseqt/src/basetoqt.h"
9#include "contactmodel/src/contactmodelthermal.h"
10#include "contactmodel/src/contactmodelfluid.h"
11
12#include "kernel/interface/iprogram.h"
13#include "module/interface/icontact.h"
14#include "module/interface/icontactmechanical.h"
15#include "module/interface/icontactthermal.h"
16#include "module/interface/icontactfluid.h"
17#include "module/interface/ifishcalllist.h"
18#include "module/interface/ipiece.h"
19#include "module/interface/ipiecemechanical.h"
20
21#ifdef FLATJOINT_LIB
22#ifdef _WIN32
23 int __stdcall DllMain(void *,unsigned, void *)
24 {
25 return 1;
26 }
27#endif
28
29 extern "C" EXPORT_TAG const char *getName()
30 {
31#if DIM==3
32 return "contactmodelmechanical3dflatjoint";
33#else
34 return "contactmodelmechanical2dflatjoint";
35#endif
36 }
37
38 extern "C" EXPORT_TAG unsigned getMajorVersion()
39 {
40 return MAJOR_VERSION;
41 }
42
43 extern "C" EXPORT_TAG unsigned getMinorVersion()
44 {
45 return MINOR_VERSION;
46 }
47
48 extern "C" EXPORT_TAG void *createInstance()
49 {
50 cmodelsxd::ContactModelFlatJoint *m = NEW cmodelsxd::ContactModelFlatJoint();
51 return (void *)m;
52 }
53#endif // FLATJOINT_LIB
54
55namespace cmodelsxd {
56 static const uint32 fjKnMask = 0x00002; // Base 1!
57 static const uint32 fjKsMask = 0x00004;
58 static const uint32 fjFricMask = 0x00008;
59
60 using namespace itasca;
61
62 int ContactModelFlatJoint::index_ = -1;
63 uint32 ContactModelFlatJoint::getMinorVersion() const { return MINOR_VERSION; ;}
64
65 ContactModelFlatJoint::ContactModelFlatJoint() : inheritanceField_(fjKnMask|fjKsMask|fjFricMask) {
66 initVectors();
67 setAreaQuantities();
68 //setFromParent(ContactModelMechanicalList::instance()->find(getName()));
69 }
70
71 ContactModelFlatJoint::ContactModelFlatJoint(const ContactModelFlatJoint &m) noexcept {
72 inheritanceField(fjKnMask|fjKsMask|fjFricMask);
73 initVectors();
74 setAreaQuantities();
75 this->copy(&m);
76 }
77
78 const ContactModelFlatJoint & ContactModelFlatJoint::operator=(const ContactModelFlatJoint &m) {
79 inheritanceField(fjKnMask|fjKsMask|fjFricMask);
80 initVectors();
81 setAreaQuantities();
82 this->copy(&m);
83 return *this;
84 }
85
86 void ContactModelFlatJoint::addToStorage(poly::vector<ContactModelMechanical> *s,int ww) {
87 s->addToStorage<ContactModelFlatJoint>(*this,ww);
88 }
89
90 ContactModelFlatJoint::~ContactModelFlatJoint() {
91 if (orientProps_)
92 delete orientProps_;
93 if (energies_)
94 delete energies_;
95 }
96
97 void ContactModelFlatJoint::archive(ArchiveStream &stream) {
98 stream & fj_nr_;
99#ifdef THREED
100 stream & fj_na_;
101#endif
102 stream & fj_elem_;
103 stream & fj_kn_;
104 stream & fj_ks_;
105 stream & fj_fric_;
106 stream & fj_rmul_;
107 stream & fj_gap0_;
108 stream & fj_ten_;
109 stream & fj_coh_;
110 stream & fj_fa_;
111 stream & fj_f_;
112 stream & fj_m_;
113 stream & rmin_;
114 stream & rbar_;
115 stream & atot_;
116 stream & a_;
117 stream & rBarl_;
118 stream & propsFixed_;
119 stream & mType_;
120 stream & bmode_;
121 stream & smode_;
122 stream & gap_;
123 stream & theta_;
124#ifdef THREED
125 stream & thetaM_;
126#endif
127 stream & egap_;
128 stream & f_;
129
130 if (stream.getArchiveState()==ArchiveStream::Save) {
131 bool b = false;
132 if (orientProps_) {
133 b = true;
134 stream & b;
135 stream & orientProps_->orient1_;
136 stream & orientProps_->orient2_;
137 stream & orientProps_->origNormal_;
138 } else
139 stream & b;
140 b = false;
141 if (energies_) {
142 b = true;
143 stream & b;
144 stream & energies_->estrain_;
145 stream & energies_->eslip_;
146 } else
147 stream & b;
148 } else {
149 bool b(false);
150 stream & b;
151 if (b) {
152 if (!orientProps_)
153 orientProps_ = NEW orientProps();
154 stream & orientProps_->orient1_;
155 stream & orientProps_->orient2_;
156 stream & orientProps_->origNormal_;
157 }
158 stream & b;
159 if (b) {
160 if (!energies_)
161 energies_ = NEW Energies();
162 stream & energies_->estrain_;
163 stream & energies_->eslip_;
164 }
165 }
166
167 stream & inheritanceField_;
168 stream & effectiveTranslationalStiffness_;
169 stream & effectiveRotationalStiffness_;
170
171 if (stream.getArchiveState()==ArchiveStream::Save || stream.getRestoreVersion() > 1)
172 stream & userArea_;
173
174 if (stream.getArchiveState()==ArchiveStream::Save || stream.getRestoreVersion() > 2)
175 stream & fj_m_set_;
176
177 if (stream.getArchiveState()==ArchiveStream::Save || stream.getRestoreVersion() > 3) {
178 stream & fj_cohres_;
179 stream & fj_resmode_;
180 }
181 }
182
183 void ContactModelFlatJoint::copy(const ContactModel *cm) {
184 ContactModelMechanical::copy(cm);
185 const ContactModelFlatJoint *in = dynamic_cast<const ContactModelFlatJoint*>(cm);
186 if (!in) throw std::runtime_error("Internal error: contact model dynamic cast failed.");
187 fj_nr(in->fj_nr());
188#ifdef THREED
189 fj_na(in->fj_na());
190#endif
191 fj_elem(in->fj_elem());
192 fj_kn(in->fj_kn());
193 fj_ks(in->fj_ks());
194 fj_fric(in->fj_fric());
195 fj_rmul(in->fj_rmul());
196 fj_gap0(in->fj_gap0());
197 fj_ten(in->fj_ten());
198 fj_coh(in->fj_coh());
199 fj_cohres(in->fj_cohres());
200 fj_fa(in->fj_fa());
201 fj_f(in->fj_f());
202 fj_m(in->fj_m());
203 fj_m_set(in->fj_m_set());
204 rmin(in->rmin());
205 rbar(in->rbar());
206 fj_resmode(in->fj_resmode());
207 atot(in->atot());
208 a_ = in->a_;
209 rBarl_ = in->rBarl_;
210 propsFixed(in->propsFixed());
211 mType(in->mType());
212 bmode_ = in->bmode_;
213 smode_ = in->smode_;
214 gap(in->gap());
215 theta(in->theta());
216#ifdef THREED
217 thetaM(in->thetaM());
218#endif
219 egap_ = in->egap_;
220 f_ = in->f_;
221 if (in->orientProps_) {
222 if (!orientProps_)
223 orientProps_ = NEW orientProps();
224 orientProps_->orient1_ = in->orientProps_->orient1_;
225 orientProps_->orient2_ = in->orientProps_->orient2_;
226 orientProps_->origNormal_ = in->orientProps_->origNormal_;
227 }
228 if (in->hasEnergies()) {
229 if (!energies_)
230 energies_ = NEW Energies();
231 estrain(in->estrain());
232 eslip(in->eslip());
233 }
234 userArea_ = in->userArea_;
235 inheritanceField(in->inheritanceField());
236 effectiveTranslationalStiffness(in->effectiveTranslationalStiffness());
237 effectiveRotationalStiffness(in->effectiveRotationalStiffness());
238 }
239
240
241 QVariant ContactModelFlatJoint::getProperty(uint32 i,const IContact *con) const {
242 // The IContact pointer may be a nullptr!
243 const IContactMechanical *c(convert_getcast<IContactMechanical>(con));
244 QVariant var;
245 switch (i) {
246 case kwFjNr : return fj_nr();
247 case kwFjElem : return fj_elem();
248 case kwFjKn : return fj_kn();
249 case kwFjKs : return fj_ks();
250 case kwFjFric : return fj_fric();
251 case kwFjEmod : {
252 if (c ==nullptr) return 0.0;
253 double rsum(0.0);
254 if (c->getEnd1Curvature().y())
255 rsum += 1.0/c->getEnd1Curvature().y();
256 if (c->getEnd2Curvature().y())
257 rsum += 1.0/c->getEnd2Curvature().y();
258 if (userArea_) {
259#ifdef THREED
260 rsum = std::sqrt(userArea_ / dPi);
261#else
262 rsum = userArea_ / 2.0;
263#endif
264 rsum += rsum;
265 }
266 return (fj_kn_ * rsum);
267 }
268 case kwFjKRatio : return (fj_ks_ == 0.0 ) ? 0.0 : (fj_kn_/fj_ks_);
269 case kwFjRmul : return fj_rmul();
270 case kwFjRadius : return rbar();
271 case kwFjGap0 : return fj_gap0();
272 case kwFjTen : return fj_ten();
273 case kwFjCoh : return fj_coh();
274 case kwFjFa : return fj_fa();
275 case kwFjF : var.setValue(fj_f()); return var;
276 case kwFjM : var.setValue(fj_m()); return var;
277 case kwFjState : return bmode_[fj_elem()-1];
278 case kwFjSlip : return smode_[fj_elem()-1];
279 case kwFjMType : return getmType();
280 case kwFjA : return a_[fj_elem()-1];
281 case kwFjEgap : return egap_[fj_elem()-1];
282 case kwFjGap : return gap().x();
283 case kwFjNstr : return -f_[fj_elem()-1].x() / a_[fj_elem()-1];
284 case kwFjSstr : return f_[fj_elem()-1].y() / a_[fj_elem()-1];
285 case kwFjSs : return tauC((-f_[fj_elem()-1].x() / a_[fj_elem()-1]),(bmode_[fj_elem()-1]==3));
286 case kwFjRelBr : var.setValue(DVect2(theta(),thetaM())); return var;
287 case kwFjCen : var.setValue(getRelElemPos(con,fj_elem()-1)); return var;
288#ifdef THREED
289 case kwFjNa : return fj_na();
290#endif
291 case kwFjTrack : var.setValue(orientProps_ ? true : false); return var;
292 case kwUserArea : return userArea_;
293 case kwFjCohRes : return fj_cohres();
294 case kwFjResMode: return fj_resmode();
295 }
296 assert(0);
297 return QVariant();
298 }
299
300 bool ContactModelFlatJoint::getPropertyGlobal(uint32 i) const {
301 switch (i) {
302 case kwFjF:
303 return false;
304 }
305 return true;
306 }
307
308 bool ContactModelFlatJoint::setProperty(uint32 i,const QVariant &v,IContact *c) {
309 bool ok(true);
310 switch (i) {
311 case kwFjNr: {
312 if (!propsFixed()) {
313 int val(v.toInt(&ok));
314 if (!ok || val < 1)
315 throw Exception("fj_nr must be an integer greater than 0.");
316 fj_nr(val);
317 if (fj_elem() > fj_n())
318 fj_elem(fj_n());
319 initVectors();
320 setAreaQuantities();
321 } else
322 throw Exception("fj_nr cannot be modified.");
323 return true;
324 }
325
326 case kwFjElem: {
327 int val(v.toInt(&ok));
328 if (!ok || val < 1 || val > fj_n())
329 throw Exception("fj_elem must be an integer between 1 and {0}.",fj_n());
330 fj_elem(val);
331 return false;
332 }
333 case kwFjKn: {
334 double val(v.toDouble(&ok));
335 if (!ok || val<0.0)
336 throw Exception("fj_kn must be a positive double.");
337 fj_kn(val);
338 return true;
339 }
340 case kwFjKs: {
341 double val(v.toDouble(&ok));
342 if (!ok || val<0.0)
343 throw Exception("fj_ks must be a positive double.");
344 fj_ks(val);
345 return true;
346 }
347 case kwFjFric: {
348 double val(v.toDouble(&ok));
349 if (!ok || val<0.0)
350 throw Exception("fj_fric must be a positive double.");
351 fj_fric(val);
352 return false;
353 }
354 case kwFjRmul: {
355 if (!propsFixed()) {
356 double val(v.toDouble(&ok));
357 if (!ok || val<0.01)
358 throw Exception("fj_rmul must be a double greater than or equal to 0.01.");
359 fj_rmul(val);
360 setAreaQuantities();
361 return true;
362 } else
363 throw Exception("fj_rmul cannot be modified.");
364
365 return false;
366 }
367 case kwFjGap0: {
368 if (!propsFixed()) {
369 double val(v.toDouble(&ok));
370 if (!ok || val<0.0)
371 throw Exception("fj_gap0 must be a positive double.");
372 fj_gap0(val);
373 if (fj_gap0() > 0.0) {
374 for(int i=1; i<=fj_n(); ++i)
375 bondElem(i,false);
376 // surfaces are parallel w/ gap G
377 DVect temp(0.0);
378 temp.rx() = fj_gap0();
379 gap(temp);
380 theta(0.0);
381 }
382 } else
383 throw Exception("fj_gap0 cannot be modified.");
384 return true;
385 }
386 case kwFjTen: {
387 double val(v.toDouble(&ok));
388 if (!ok || val<0.0)
389 throw Exception("fj_ten must be a positive double.");
390 fj_ten(val);
391 return false;
392 }
393 case kwFjFa: {
394 double val(v.toDouble(&ok));
395 if (!ok || val<0.0)
396 throw Exception("fj_fa must be a positive double.");
397 fj_fa(val);
398 return false;
399 }
400 case kwFjCoh: {
401 double val(v.toDouble(&ok));
402 if (!ok || val<0.0)
403 throw Exception("fj_coh must be a positive double.");
404 fj_coh(val);
405 return false;
406 }
407 case kwFjA: {
408 double val(v.toDouble(&ok));
409 if (!ok || val<0.0)
410 throw Exception("fj_area must be a positive double.");
411 a_[fj_elem()-1] = val;
412 return false;
413 }
414 case kwFjNstr: {
415 double val(v.toDouble(&ok));
416 if (!ok || val<0.0)
417 throw Exception("fj_sigma must be a positive double.");
418 f_[fj_elem()-1].rx() = -val * a_[fj_elem()-1];
419 return false;
420 }
421 case kwFjSstr: {
422 double val(v.toDouble(&ok));
423 if (!ok || val<0.0)
424 throw Exception("fj_tau must be a positive double.");
425 f_[fj_elem()-1].ry() = val * a_[fj_elem()-1];
426 return false;
427 }
428#ifdef THREED
429 case kwFjNa: {
430 if (!propsFixed()) {
431 int val(v.toInt(&ok));
432 if (!ok || val < 1)
433 throw Exception("fj_na must be an integer greater than 0.");
434 fj_na(val);
435 if (fj_elem() > fj_n())
436 fj_elem(fj_n());
437 initVectors();
438 setAreaQuantities();
439 } else
440 throw Exception("fj_na cannot be modified.");
441 return true;
442 }
443#endif
444 case kwFjCen: {
445 if (!v.canConvert<DVect>())
446 throw Exception("fj_cen cannot be modified.");
447 DVect val(v.value<DVect>());
448 int el = fj_elem()-1;
449 setRelElemPos(c,el,val);
450 return false;
451 }
452 case kwFjTrack: {
453 if (!v.canConvert<bool>())
454 throw Exception("fj_track must be a boolean.");
455 bool b = v.toBool();
456 if (b) {
457 if (!orientProps_)
458 orientProps_ = NEW orientProps();
459 } else {
460 if (orientProps_) {
461 delete orientProps_;
462 orientProps_ = 0;
463 }
464 }
465 return true;
466 }
467 case kwUserArea: {
468 if (!v.canConvert<double>())
469 throw Exception("user_area must be a double.");
470 double val(v.toDouble());
471 if (val < 0.0)
472 throw Exception("Negative user_area not allowed.");
473 userArea_ = val;
474 propsFixed_ = false;
475 return true;
476 }
477 case kwFjCohRes: {
478 double val(v.toDouble(&ok));
479 if (!ok || val<0.0)
480 throw Exception("fj_cohres must be a positive double.");
481 fj_cohres(val);
482 return false;
483 }
484 case kwFjResMode: {
485 int val(v.toInt(&ok));
486 if (!ok || (val != 0 && val != 1))
487 throw Exception("fj_resmode must be 0 or 1.");
488 fj_resmode(val);
489 return false;
490 }
491 }
492 return false;
493 }
494
495 bool ContactModelFlatJoint::getPropertyReadOnly(uint32 i) const {
496 switch (i) {
497 case kwFjF:
498 case kwFjM:
499 case kwFjGap:
500 case kwFjRelBr:
501 case kwFjState:
502 case kwFjSlip:
503 case kwFjEgap:
504 case kwFjNstr:
505 case kwFjSstr:
506 case kwFjSs:
507 case kwFjRadius:
508 return true;
509 default:
510 break;
511 }
512 return false;
513 }
514
515 QString ContactModelFlatJoint::getMethodArguments(uint32 i) const {
516 switch (i) {
517 case kwBond:
518 case kwUnbond:
519 return "gap,element";
520 case KwDeformability:
521 return "emod,kratio";
522 case kwInitialize:
523 return "force,moment";
524 }
525 return QString();
526 }
527
528 bool ContactModelFlatJoint::setMethod(uint32 i,const QVector<QVariant> &vl,IContact *con) {
529 IContactMechanical *c(convert_getcast<IContactMechanical>(con));
530 bool bond(false);
531 switch (i) {
532 case kwBond:
533 bond = true;
534 [[fallthrough]];
535 case kwUnbond: {
536 int seg(0);
537 double mingap = -1.0 * limits<double>::max();
538 double maxgap = 0;
539 if (vl.size()==2) {
540 // The first is the gap
541 QVariant arg = vl.at(0);
542 if (!arg.isNull()) {
543 if (arg.canConvert<double>())
544 maxgap = vl.at(0).toDouble();
545 else if (arg.canConvert<DVect2>()) {
546 DVect2 value = vl.at(0).value<DVect2>();
547 mingap = value.minComp();
548 maxgap = value.maxComp();
549 } else
550 throw Exception("Argument {0} not recognized in method {1} in contact model {2}.",vl.at(0),bond ? "bond":"unbond",getName());
551 }
552 arg = vl.at(1);
553 if (!arg.isNull()) {
554 seg = vl.at(1).toUInt();
555 if (seg < 1)
556 throw Exception("Element indices start at 1 in method {0} in contact model {1}.",bond ? "bond":"unbond",getName());
557 if (seg > fj_n())
558 throw Exception("Element index {0} exceeds segments number ({1}) in method {2} in contact model {3}.",seg,fj_n(),bond ? "bond":"unbond",getName());
559 }
560 }
561 double gap = c->getGap();
562 if (gap >= mingap && gap <= maxgap) {
563 if (!seg) {
564 for(int iSeg=1; iSeg<=fj_n(); ++iSeg)
565 bondElem(iSeg,bond);
566 } else {
567 bondElem(seg,bond);
568 }
569 // If have installed bonds and tracking is enabled then set the contact normal appropriately
570 if (orientProps_) {
571 orientProps_->orient1_ = Quat::identity();
572 orientProps_->orient2_ = Quat::identity();
573 orientProps_->origNormal_ = toVect(con->getNormal());
574 }
575 }
576 return true;
577 }
578 case KwDeformability:
579 {
580 double emod;
581 double krat;
582 if (vl.at(0).isNull())
583 throw Exception("Argument emod must be specified with method deformability in contact model {0}.",getName());
584 emod = vl.at(0).toDouble();
585 if (emod<0.0)
586 throw Exception("Negative emod not allowed in contact model {0}.",getName());
587 if (vl.at(1).isNull())
588 throw Exception("Argument kratio must be specified with method deformability in contact model {0}.",getName());
589 krat = vl.at(1).toDouble();
590 if (krat<0.0)
591 throw Exception("Negative stiffness ratio not allowed in contact model {0}.",getName());
592 double rsum(0.0);
593 if (c->getEnd1Curvature().y())
594 rsum += 1.0/c->getEnd1Curvature().y();
595 if (c->getEnd2Curvature().y())
596 rsum += 1.0/c->getEnd2Curvature().y();
597 if (userArea_) {
598#ifdef THREED
599 rsum = std::sqrt(userArea_ / dPi);
600#else
601 rsum = userArea_ / 2.0;
602#endif
603 rsum += rsum;
604 }
605 fj_kn_ = emod / rsum;
606 fj_ks_ = (krat == 0.0) ? 0.0 : fj_kn_ / krat;
607 return true;
608 }
609 case KwUpdateGeom: {
610 // go through and update the total area (atot) and the
611 // radius rbar
612 double at = 0.0;
613 for (int i=1; i<=fj_n(); ++i)
614 at += a_[i-1];
615 atot(at);
616 //get the equivalent radius
617#ifdef THREED
618 rbar(sqrt(at/dPi));
619#else
620 rbar(at/2.0);
621#endif
622 return true;
623 }
624 case kwArea: {
625 if (!userArea_) {
626 double rsq(1./std::max(c->getEnd1Curvature().y(),c->getEnd2Curvature().y()));
627#ifdef THREED
628 userArea_ = rsq * rsq * dPi;
629#else
630 userArea_ = rsq * 2.0;
631#endif
632 }
633 return true;
634 }
635 case kwInitialize: {
636 DVect force;
637 DAVect moment;
638 if (vl.at(0).isNull())
639 throw Exception("Argument force must be specified with method initialize in contact model {0}.",getName());
640 force = vl.at(0).value<DVect>();
641 if (vl.at(1).isNull())
642 throw Exception("Argument moment must be specified with method initialize in contact model {0}.",getName());
643#ifdef THREED
644 moment = vl.at(1).value<DVect>();
645#else
646 moment.rz() = vl.at(1).toDouble();
647#endif
648 // Set the gap accordingly to get the correct force
649 setForce(force,con);
650 fj_m_set(moment);
651 return true;
652 }
653 }
654 return false;
655 }
656
657 double ContactModelFlatJoint::getEnergy(uint32 i) const {
658 double ret(0.0);
659 if (!energies_)
660 return ret;
661 switch (i) {
662 case kwEStrain: return energies_->estrain_;
663 case kwESlip: return energies_->eslip_;
664 }
665 assert(0);
666 return ret;
667 }
668
669 bool ContactModelFlatJoint::getEnergyAccumulate(uint32 i) const {
670 switch (i) {
671 case kwEStrain: return false;
672 case kwESlip: return true;
673 }
674 assert(0);
675 return false;
676 }
677
678 void ContactModelFlatJoint::setEnergy(uint32 i,const double &d) {
679 if (!energies_) return;
680 switch (i) {
681 case kwEStrain: energies_->estrain_ = d; return;
682 case kwESlip: energies_->eslip_ = d; return;
683 }
684 assert(0);
685 return;
686 }
687
688 bool ContactModelFlatJoint::validate(ContactModelMechanicalState *state,const double &) {
689 assert(state);
690 const IContactMechanical *c = state->getMechanicalContact();
691 assert(c);
692 // This presumes that one of the ends has a non-zero curvature
693 rmin(1.0/std::max(c->getEnd1Curvature().y(),c->getEnd2Curvature().y()));
694 if (userArea_) {
695#ifdef THREED
696 rmin(std::sqrt(userArea_ / dPi));
697#else
698 rmin(userArea_ / 2.0);
699#endif
700 }
701 if (!propsFixed()) {
702 setAreaQuantities();
703 mType(getmType());
704 }
705
706 // Initialize the tracking if not initialized
707 if (orientProps_ && orientProps_->origNormal_ == DVect(0.0)) {
708 orientProps_->origNormal_ = toVect(c->getContact()->getNormal());
709 orientProps_->orient1_ = Quat::identity();
710 orientProps_->orient2_ = Quat::identity();
711 }
712
713 if (state->trackEnergy_)
714 activateEnergy();
715
716 updateEffectiveStiffness(state);
717 return checkActivity(state->gap_);
718 }
719
720 void ContactModelFlatJoint::updateEffectiveStiffness(ContactModelMechanicalState *) {
721 DVect2 ret(fj_kn_,fj_ks_);
722 ret *= atot();
723 effectiveTranslationalStiffness(ret);
724#ifdef TWOD
725 effectiveRotationalStiffness(DAVect(fj_kn() * (2.0/3.0)*rbar()*rbar()*rbar()));
726#else
727 double piR4 = dPi * rbar() * rbar() * rbar() * rbar();
728 double t = fj_kn() * 0.25 * piR4;
729 effectiveRotationalStiffness(DAVect(fj_ks() * 0.50 * piR4,t,t));
730#endif
731 }
732
733 bool ContactModelFlatJoint::forceDisplacementLaw(ContactModelMechanicalState *state,const double ×tep) {
734 FP_S;
735 if (!propsFixed())
736 propsFixed(true);
737 FP_S;
738 timestep;
739 assert(state);
740
741 FP_S;
742 if (state->activated()) {
743 if (cmEvents_[fActivated] >= 0) {
744 auto c = state->getContact();
745 std::vector<fish::Parameter> arg = { fish::Parameter(c->getIThing()) };
746 IFishCallList *fi = const_cast<IFishCallList*>(state->getProgram()->findInterface<IFishCallList>());
747 fi->setCMFishCallArguments(c,arg,cmEvents_[fActivated]);
748 }
749 }
750 FP_S;
751
752 // Update the orientations
753 if (orientProps_) {
754 orientProps_->orient1_.increment(state->getMechanicalContact()->getEnd1Mechanical()->getAngVelocity()*timestep);
755 orientProps_->orient2_.increment(state->getMechanicalContact()->getEnd2Mechanical()->getAngVelocity()*timestep);
756 }
757 FP_S;
758
759#ifdef TWOD
760 // Translational increment in local coordinates
761 DVect del_U = state->relativeTranslationalIncrement_;
762 double del_theta = state->relativeAngularIncrement_.z();
763 gap(gap() + del_U); // in normal and shear direction in 2D
764 theta(theta() + del_theta);
765 double dSig=0.0, dTau=0.0;
766 double delX = 2*rbar() / fj_n();
767 double rbar2 = rbar() / fj_n();
768 DVect dFSum(0.0);
769 double dMSum = 0.0;
770 if (state->trackEnergy_) {
771 assert(energies_);
772 energies_->estrain_ = 0.0;
773 }
774 bool oneBonded = false;
775 for(int i=0; i<fj_n(); ++i) {
776 double g0 = gap((i )*delX);
777 double g1 = gap((i+1)*delX);
778 double gMid = 0.5*(g0 + g1);
779 if (bmode_[i] != 3 && gMid > 0) {
780 egap_[i] = gMid;
781 f_[i] = DVect(0.0);
782 continue;
783 }
784 dSig = computeSig(g0,g1,rbar2,a_[i],(bmode_[i]==3));
785 bool tensileBreak = false;
786 if (bmode_[i]==3) {
787 if (state->canFail_ && dSig >= fj_ten()) {
788 breakBond(i+1,1,state);
789 dSig = dTau = 0.0;
790 tensileBreak = true;
791 }
792 }
793 if (!tensileBreak) {
794 dTau = f_[i].y() / a_[i];
795 double dUse = delUse(egap_[i],gMid,(bmode_[i]==3),del_U.y());
796 double dtauP = dTau - fj_ks()*dUse;
797 double dtauPabs = abs(dtauP);
798 if (bmode_[i]==3) { // bonded
799 if (dtauPabs < tauC(dSig,true))
800 dTau = dtauP;
801 else {
802 if (state->canFail_) {
803 breakBond(i+1,2,state);
804 if (fj_resmode() == 0)
805 dSig = dTau = 0.0;
806 else
807 dTau = fj_cohres() - dSig * fj_fric();
808 }
809 }
810 } else { // unbonded
811 double dtauC = tauC(dSig,false);
812 if (dtauPabs <= dtauC) {
813 dTau = dtauP;
814 slipChange(i+1,false,state);
815 } else {
816 dTau = dtauP * ( dtauC / dtauPabs );
817 slipChange(i+1,true,state);
818 if (state->trackEnergy_) { energies_->eslip_ += dtauC*a_[i]*abs(dUse);}
819 }
820 }
821 }
822 oneBonded = true;
823 egap_[i] = gMid;
824 f_[i] = DVect(-dSig*a_[i],dTau*a_[i]);
825 dFSum += f_[i];
826 double m = computeM(g0,g1,rbar2,(bmode_[i]==3)) + fj_m_set().z()/fj_n();
827 dMSum += m - rBarl_[i]*f_[i].x();
828 if (state->trackEnergy_) {
829 if (fj_kn_) {
830 double ie = 2.0*rBarl_[i]*rBarl_[i]*rBarl_[i] / 3.0;
831 energies_->estrain_ += 0.5*(dSig*dSig*a_[i] + m*m/ie) / fj_kn_;
832 }
833 if (fj_ks_) {
834 energies_->estrain_ += 0.5 * dTau*dTau*a_[i] / fj_ks_;
835 }
836 }
837 }
838 //
839 fj_f(dFSum);
840 fj_m(DAVect(dMSum));
841 if (!oneBonded)
842 fj_m_set(DAVect(0.0));
843#else
844 FP_S;
845 CAxes localSys = state->axes_;
846 DVect trans = state->relativeTranslationalIncrement_; // translation increment in local coordinates
847 DAVect ang = state->relativeAngularIncrement_; // rotational increment in local coordinates
848 DVect shear(0.0,trans.y(),trans.z());
849 DVect del_Us = localSys.toGlobal(shear); // In global coordinates
850 // What is the twist in global coordinates?
851 DVect del_Theta_t = localSys.e1()*ang.x();
852 theta_ += ang.y();
853 thetaM_ += ang.z();
854
855 FP_S;
856 gap(gap() + trans);
857 if (state->trackEnergy_) {
858 assert(energies_);
859 energies_->estrain_ = 0.0;
860 }
861 FP_S;
862 DVect force(0.0);
863 DAVect mom(0.0);
864 bool oneBonded = false;
865 FP_S;
866 for (int e=1,i=0; e<=fj_n(); ++e, ++i) {
867 FP_S;
868 double gBar1 = gap( rBarl_[i].x(),rBarl_[i].y());
869 FP_S;
870 if (!Bonded(e) && gBar1 > 0) {
871 FP_S;
872 egap_[i] = gBar1;
873 f_[i] = DVect(0.0);
874 FP_S;
875 continue;
876 }
877 FP_S;
878 DVect r = localSys.e2()*rBarl_[i].x() + localSys.e3()*rBarl_[i].y(); // location of element point
879 FP_S;
880 double sigBar_e = sigBar(e);
881 f_[i].rx() = -sigBar_e * a_[i]; // Step 1...
882 FP_S;
883 if (Bonded(e) && (sigBar_e >= fj_ten())) { // break bond in tension
884 FP_S;
885 if (state->canFail_) {
886 FP_S;
887 breakBond(e,1,state);
888 FP_S;
889 f_[i] = DVect(0.0);
890 }
891 FP_S;
892 } else {
893 FP_S;
894 DVect del_us = del_Us + (del_Theta_t & r); // In global - has the twist in there
895 double del_usl = delUse(egap_[i],gBar1,Bonded(e),(del_us | localSys.e2()));
896 double del_usm = delUse(egap_[i],gBar1,Bonded(e),(del_us | localSys.e3()));
897 double Fs_lP = f_[i].y() - fj_ks() * a_[i] * del_usl;
898 double Fs_mP = f_[i].z() - fj_ks() * a_[i] * del_usm;
899 FP_S;
900 double FsPMag = sqrt( Fs_lP*Fs_lP + Fs_mP*Fs_mP );
901 FP_S;
902 double tauBarP = FsPMag / a_[i];
903 FP_S;
904 if ( !Bonded(e) ) {
905 FP_S;
906 double tau_c = sigBar_e < 0.0 ? fj_cohres()-fj_fric()*sigBar_e : 0.0;
907 if ( tauBarP <= tau_c ) {
908 f_[i].ry() = Fs_lP;
909 f_[i].rz() = Fs_mP;
910 slipChange(e,false,state);
911 } else { // enforce sliding
912 FP_S;
913 double sFac = tau_c * a_[i] / FsPMag;
914 FP_S;
915 f_[i].ry() = Fs_lP * sFac;
916 f_[i].rz() = Fs_mP * sFac;
917 slipChange(e,true,state);
918 if (state->trackEnergy_) { energies_->eslip_ += tau_c*a_[i]*sqrt(del_usl*del_usl+del_usm*del_usm);}
919 }
920 } else { // Bonded(e)
921 FP_S;
922 double tau_c = fj_coh() - sigBar_e * tan(dDegrad*fj_fa());
923 if ( tauBarP <= tau_c ) {
924 f_[i].ry() = Fs_lP;
925 f_[i].rz() = Fs_mP;
926 } else { // break bond in shear
927 if (state->canFail_) {
928 breakBond(e,2,state);
929 if (fj_resmode() == 0)
930 f_[i] = DVect(0.0);
931 else {
932 double newForce = fj_cohres() - sigBar_e * fj_fric();
933 if (!userArea_)
934 newForce *= a_[i];
935 else
936 newForce *= userArea_ / fj_n();
937 FP_S;
938 newForce /= std::sqrt(f_[i].y()*f_[i].y() + f_[i].z()*f_[i].z());
939 FP_S;
940 f_[i].ry() *= newForce;
941 f_[i].rz() *= newForce;
942 }
943 }
944 }
945 FP_S;
946 }
947 }
948 oneBonded = true;
949 force += f_[i];
950 FP_S;
951 mom += (localSys.toLocal(r) & f_[i]) + fj_m_set()/fj_n();
952 FP_S;
953 egap_[i] = gBar1;
954 if (state->trackEnergy_) {
955 energies_->estrain_ += computeStrainEnergy(e);
956 FP_S;
957 }
958 FP_S;
959 }
960 FP_S;
961 fj_f(force);
962 fj_m(mom);
963 if (!oneBonded)
964 fj_m_set(DAVect(0.0));
965 FP_S;
966#endif
967 assert(fj_f_ == fj_f_);
968 FP_S;
969 return checkActivity(0.0);
970 }
971
972 bool ContactModelFlatJoint::thermalCoupling(ContactModelMechanicalState*, ContactModelThermalState* ts, IContactThermal*, const double&) {
973 // Account for thermal expansion in incremental mode
974 if (ts->gapInc_ == 0.0) return false;
975 DVect dg(0.0);
976 dg.rx() = ts->gapInc_;
977 gap(gap() + dg);
978 return true;
979 }
980
981 void ContactModelFlatJoint::setAreaQuantities() {
982 rbar(fj_rmul() * rmin());
983#ifdef TWOD
984 atot(2.0 * rbar());
985 double v = atot()/fj_n();
986 for (int i=1; i<=fj_n(); ++i) {
987 a_[i-1] = v;
988 rBarl_[i-1] = rbar() * (double(-2*i + 1 + fj_n()) / fj_n());
989 }
990#else
991 atot(dPi * rbar() * rbar());
992 double del_r = rbar() / fj_nr();
993 double del_al = 2.0*dPi / fj_na();
994 double fac = 2.0/3.0;
995 for (int i=0; i < fj_n(); ++i) {
996 double dVal = i / fj_na();
997 int I = (int)floor( dVal );
998 int J = i - I*fj_na();
999 double r1 = I * del_r;
1000 double r2 = (I + 1) * del_r;
1001 double al1 = J * del_al;
1002 double al2 = (J + 1) * del_al;
1003 a_[i] = 0.5 * (al2 - al1) * (r2*r2 - r1*r1);
1004 rBarl_[i] = DVect2(((sin(al2) - sin(al1)) / (al2 - al1))*((r2*r2*r2 - r1*r1*r1)/(r2*r2 - r1*r1)),
1005 ((cos(al1) - cos(al2)) / (al2 - al1))*((r2*r2*r2 - r1*r1*r1)/(r2*r2 - r1*r1)))*fac;
1006 }
1007#endif
1008 updateEffectiveStiffness(0);
1009 }
1010
1011 DVect ContactModelFlatJoint::getRelElemPos(const IContact* c,int i) const {
1012 DVect ret(0.0);
1013 if (c) {
1014 ret = c->getPosition();
1015 CAxes localSys = c->getLocalSystem();
1016#ifdef TWOD
1017 ret += localSys.e2()*rBarl_[i];
1018#else
1019 ret += localSys.e2()*rBarl_[i].x() + localSys.e3()*rBarl_[i].y();
1020#endif
1021 }
1022 return ret;
1023 }
1024
1025 void ContactModelFlatJoint::setRelElemPos(const IContact* c,int i,const DVect &pos) {
1026 // pos is a position in space in global coordinates
1027 propsFixed(true);
1028 if (c) {
1029 // project onto the plane
1030 DVect cp = c->getPosition();
1031 DVect norm = toVect(c->getNormal());
1032 double sd = norm|(cp - pos);
1033 // np is the point on the plane
1034 DVect np = pos+norm*sd;
1035 np = np-cp;
1036 CAxes localSys = c->getLocalSystem();
1037 np = localSys.toLocal(np);
1038#ifdef TWOD
1039 rBarl_[i] = np.y();
1040#else
1041 rBarl_[i] = DVect2(np.y(),np.z());
1042#endif
1043 }
1044 }
1045
1046 int ContactModelFlatJoint::getmType() const {
1047 if (propsFixed()) return mType();
1048 //
1049 if (fj_gap0() > 0.0) return 2;
1050 //
1051 // If we get to here, then G == 0.0.
1052 bool AllBonded = true;
1053 bool AllSlit = true;
1054 for(int i=0; i<fj_n(); ++i) {
1055 if (bmode_[i] != 3) AllBonded = false;
1056 else AllSlit = false;
1057 }
1058 if (AllBonded) return 1;
1059 if (AllSlit) return 3;
1060 //
1061 return 4;
1062 }
1063
1064 void ContactModelFlatJoint::bondElem(int iSeg,bool bBond ) {
1065 if (bBond) {
1066 if (fj_gap0() == 0.0) {
1067 bmode_[iSeg-1] = 3;
1068 } else
1069 bmode_[iSeg-1] = 0;
1070 } else
1071 bmode_[iSeg-1] = 0;
1072 }
1073
1074 void ContactModelFlatJoint::breakBond(int iSeg,int fmode,ContactModelMechanicalState *state) {
1075 bmode_[iSeg-1] = fmode;
1076 if (cmEvents_[fBondBreak] >= 0) {
1077 auto c = state->getContact();
1078 std::vector<fish::Parameter> arg = { fish::Parameter(c->getIThing()),
1079 fish::Parameter((qint64)iSeg),
1080 fish::Parameter((qint64)fmode),
1081 fish::Parameter(computeStrainEnergy(iSeg))
1082 };
1083 IFishCallList *fi = const_cast<IFishCallList*>(state->getProgram()->findInterface<IFishCallList>());
1084 fi->setCMFishCallArguments(c,arg,cmEvents_[fBondBreak]);
1085 }
1086 if (!isBonded() && cmEvents_[fBroken] >= 0) {
1087 auto c = state->getContact();
1088 std::vector<fish::Parameter> arg = { fish::Parameter(c->getIThing()) };
1089 IFishCallList *fi = const_cast<IFishCallList*>(state->getProgram()->findInterface<IFishCallList>());
1090 fi->setCMFishCallArguments(c,arg,cmEvents_[fBroken]);
1091 }
1092 }
1093
1094 void ContactModelFlatJoint::slipChange(int iSeg,bool smode,ContactModelMechanicalState *state) {
1095 bool emitEvent = false;
1096 if (smode) {
1097 if (!smode_[iSeg-1]) {
1098 emitEvent = true;
1099 smode_[iSeg-1] = smode;
1100 }
1101 } else {
1102 if (smode_[iSeg-1]) {
1103 emitEvent = true;
1104 smode_[iSeg-1] = smode;
1105 }
1106 }
1107 if (emitEvent && cmEvents_[fSlipChange] >= 0) {
1108 auto c = state->getContact();
1109 std::vector<fish::Parameter> arg = { fish::Parameter(c->getIThing()),
1110 fish::Parameter((qint64)iSeg),
1111 fish::Parameter(smode) };
1112 IFishCallList *fi = const_cast<IFishCallList*>(state->getProgram()->findInterface<IFishCallList>());
1113 fi->setCMFishCallArguments(c,arg,cmEvents_[fSlipChange]);
1114 }
1115 }
1116
1117 double ContactModelFlatJoint::tauC(const double &dSig,bool bBonded) const {
1118 if (bBonded) return (fj_coh() + (tan(dDegrad*fj_fa()) * (-dSig)) );
1119 else
1120 return (dSig < 0.0 ? fj_cohres() - fj_fric() * dSig : 0.0 );
1121 }
1122
1123#ifdef THREED
1124 double ContactModelFlatJoint::xi(int comp) const {
1125 if (comp == 1) return abs(theta_) <= 1e-12 ? 0.0 : theta_/thbMag();
1126 else return abs(thetaM_) <= 1e-12 ? 0.0 : thetaM_/thbMag();
1127 }
1128#endif
1129
1130 void ContactModelFlatJoint::initVectors() {
1131 a_.resize(fj_n());
1132 rBarl_.resize(fj_n());
1133 bmode_.resize(fj_n());
1134 smode_.resize(fj_n());
1135 egap_.resize(fj_n());
1136 f_.resize(fj_n());
1137 for (int i=0; i<fj_n(); ++i) {
1138 a_[i] = egap_[i] = 0.0;
1139#ifdef THREED
1140 rBarl_[i] = DVect2(0.0);
1141#else
1142 rBarl_[i] = 0.0;
1143#endif
1144 f_[i] = DVect(0.0);
1145 bmode_[i] = 0;
1146 smode_[i] = false;
1147 }
1148 }
1149
1150#ifdef TWOD
1151 double ContactModelFlatJoint::gap(const double &x) const {
1152 return gap().x() + theta()*(x - rbar());
1153 }
1154#else
1155 double ContactModelFlatJoint::gap(const double &r_l,const double &r_m ) const {
1156 FP_S;
1157 auto ret = gap().x() + ( r_m*xi(1) - r_l*xi(2) ) * thbMag();
1158 FP_S;
1159 return ret;
1160 }
1161
1162 double ContactModelFlatJoint::sigBar(int e) const {
1163 FP_S;
1164 if (!Bonded(e) && gap(rBarl_[e-1].x(),rBarl_[e-1].y()) >= 0.0) {
1165 FP_S;
1166 return 0.0;
1167 } else {
1168 auto ret = fj_kn() * gap(rBarl_[e-1].x(),rBarl_[e-1].y());
1169 FP_S;
1170 return ret;
1171 }
1172 }
1173
1174 double ContactModelFlatJoint::tauBar(int e) const {
1175 return a_[e-1] <= 1e-12 ?
1176 0.0 : sqrt(f_[e-1].y()*f_[e-1].y() + f_[e-1].z()*f_[e-1].z())/a_[e-1] ;
1177 }
1178
1179#endif
1180
1181 double ContactModelFlatJoint::computeStrainEnergy(int e) const {
1182 double ret(0.0);
1183 int i = e - 1;
1184#ifdef TWOD
1185 double delX = 2 * rbar() / fj_n();
1186 double g0 = gap((i)*delX);
1187 double g1 = gap((i + 1)*delX);
1188 double rbar2 = rbar() / fj_n();
1189 double dSig = computeSig(g0, g1, rbar2, a_[i], (bmode_[i] == 3));
1190 double m = computeM(g0, g1, rbar2, (bmode_[i] == 3));
1191 double dTau = f_[i].y() / a_[i]; // only valid before failure
1192 if (fj_kn_) {
1193 double ie = 2.0*rBarl_[i] * rBarl_[i] * rBarl_[i] / 3.0;
1194 ret += 0.5*(dSig*dSig*a_[i] + m * m / ie) / fj_kn_;
1195 }
1196 if (fj_ks_) {
1197 ret += 0.5 * dTau*dTau*a_[i] / fj_ks_;
1198 }
1199#else
1200 if (fj_kn_) {
1201 ret += 0.5*(sigBar(e)*sigBar(e)*a_[i]) / fj_kn_;
1202 }
1203 if (fj_ks_) {
1204 ret += 0.5 * (f_[i].y()*f_[i].y() + f_[i].z()*f_[i].z()) / (fj_ks_*a_[i]);
1205 }
1206#endif
1207 return ret;
1208 }
1209
1210 double ContactModelFlatJoint::computeSig(const double &g0,const double &g1,const double &rbar,
1211 const double &dA,bool bBonded ) const {
1212 double gTerm;
1213 switch (getCase(g0, g1)) {
1214 case 1:
1215 if (bBonded) gTerm = (g0 + g1);
1216 else if (g0 < 0.0) gTerm = -( g0*g0 / (g1 - g0) );
1217 else gTerm = ( g1*g1 / (g1 - g0) );
1218 break;
1219 case 2:
1220 if (bBonded) gTerm = (g0 + g1);
1221 else gTerm = 0.0;
1222 break;
1223 case 3:
1224 gTerm = (g0 + g1);
1225 break;
1226 default: gTerm = 0.0; break;
1227 }
1228 return (fj_kn() * gTerm * rbar) / dA;
1229 }
1230
1231 double ContactModelFlatJoint::computeM(const double &g0,const double &g1,const double &rbar,
1232 bool bBonded) const {
1233 double gTerm;
1234 switch (getCase(g0,g1)) {
1235 case 1:
1236 if (bBonded) gTerm = -((g1 - g0) / 3.0);
1237 else if (g0 < 0.0) gTerm = g0*g0*(g0 - 3.0*g1) / (3.0*(g1-g0)*(g1-g0));
1238 else gTerm = -(((g1-g0)*(g1-g0)*(g1-g0) + g0*g0*(g0 - 3.0*g1))
1239 / (3.0*(g1-g0)*(g1-g0)));
1240 break;
1241 case 2:
1242 if (bBonded) gTerm = -((g1 - g0) / 3.0);
1243 else gTerm = 0.0;
1244 break;
1245 case 3:
1246 gTerm = -((g1 - g0) / 3.0);
1247 break;
1248 default: gTerm = 0.0; break;
1249 }
1250 return fj_kn() * gTerm * rbar*rbar;
1251 }
1252
1253 int ContactModelFlatJoint::getCase(const double &g0,const double &g1) const {
1254 if (g0 * g1 < 0.0) // Case 1: gap changes sign
1255 return 1;
1256 else if (g0 >= 0.0 && g1 >= 0.0) // Case 2: gap remains positive or zero
1257 return 2;
1258 else // Case 3: gap remains negative
1259 return 3;
1260 }
1261
1262 double ContactModelFlatJoint::delUse(const double &gapStart,const double &gapEnd,bool bBonded,
1263 const double &delUs) const {
1264 if ( bBonded ) return delUs;
1265 if ( gapStart <= 0.0 ) {
1266 if ( gapEnd <= 0.0 )
1267 return delUs;
1268 else { // gapEnd > 0.0
1269 double xi = -gapStart / (gapEnd - gapStart);
1270 return delUs * xi;
1271 }
1272 } else { // gapStart > 0.0
1273 if ( gapEnd >= 0.0 )
1274 return 0.0;
1275 else { // gapEnd < 0.0
1276 double xi = -gapStart / (gapEnd - gapStart);
1277 return delUs * (1.0 - xi);
1278 }
1279 }
1280 }
1281
1282 bool ContactModelFlatJoint::checkActivity(const double &inGap) {
1283 FP_S;
1284 // If any subcontact is bonded return true
1285 FOR(it,bmode_) if ((*it) == 3)
1286 return true;
1287 FP_S;
1288 // If the normal gap is less than 2*rbar return true
1289 if (gap().x() < 2.0*rbar())
1290 return true;
1291 FP_S;
1292 // check to see if there is overlap (based on the initial gap) to reset activity if the contact has been previously deactivated
1293 if (inGap < 0) {
1294 // reset the relative rotation
1295 theta(0.0);
1296#ifdef THREED
1297 thetaM(0.0);
1298#endif
1299 // set the gap to be the current gap, removing the shear displacement
1300 DVect inp(inGap,0.0);
1301 gap(inp);
1302 FP_S;
1303 return true;
1304 }
1305 FP_S;
1306 return false;
1307 }
1308
1309 void ContactModelFlatJoint::setForce(const DVect &v,IContact *) {
1310 fj_f_ = v;
1311 DVect df = v / f_.size();
1312 for (int i=0; i<f_.size(); ++i)
1313 f_[i] = df;
1314 // Set gap consistent with normal force
1315 double at = userArea_;
1316 if (!userArea_) {
1317 for (int i = 1; i <= fj_n(); ++i)
1318 at += a_[i - 1];
1319 }
1320 gap_.rx() = -1.0 * v.x() / (fj_kn_ * at);
1321 }
1322
1323 void ContactModelFlatJoint::getSphereList(const IContact *con,std::vector<DVect> *pos,std::vector<double> *rad,std::vector<double> *val) {
1324 assert(pos);
1325 assert(rad);
1326 assert(val);
1327 if (!orientProps_)
1328 return;
1329 // find minimal radii for end1
1330 double br = convert_getcast<IContactMechanical>(con)->getEnd1Curvature().y();
1331 if (br) {
1332 const IPiece *p = con->getEnd1();
1333 FArray<const IContact*> arr;
1334 p->getContactList(&arr);
1335 double maxgap = 0.0;
1336 FOR(ic,arr) {
1337 const IContactMechanical *mc = convert_getcast<IContactMechanical>(*ic);
1338 const IContactModelMechanical *mcm = mc->getModelMechanical();
1339 if (mcm->getContactModel()->getIndex() == ContactModelFlatJoint::getIndex()) {
1340 const ContactModelFlatJoint *in = dynamic_cast<const ContactModelFlatJoint*>(mcm);
1341 maxgap = std::max<double>(maxgap,in->gap().x()- mc->getGap());
1342 }
1343 }
1344 br = 1.0 / br - 0.5*maxgap;
1345 const IContactMechanical *mc = convert_getcast<IContactMechanical>(con);
1346 pos->push_back(convert_getcast<IPieceMechanical>(mc->getEnd1())->getPosition());
1347 rad->push_back(br);
1348 val->push_back(mc->getEnd1()->getIThing()->getID());
1349 }
1350
1351 // Give the end2 sphere - bummer
1352 br = convert_getcast<IContactMechanical>(con)->getEnd2Curvature().y();
1353 if (br) {
1354 const IPiece *p = con->getEnd2();
1355 FArray<const IContact*> arr;
1356 p->getContactList(&arr);
1357 double maxgap = 0.0;
1358 FOR(ic,arr) {
1359 const IContactMechanical *mc = convert_getcast<IContactMechanical>(*ic);
1360 const IContactModelMechanical *mcm = mc->getModelMechanical();
1361 if (mcm->getContactModel()->getIndex() == ContactModelFlatJoint::getIndex()) {
1362 const ContactModelFlatJoint *in = dynamic_cast<const ContactModelFlatJoint*>(mcm);
1363 maxgap = std::max<double>(maxgap,in->gap().x()- mc->getGap());
1364 }
1365 }
1366 br = 1.0 / br - 0.5*maxgap;
1367 const IContactMechanical *mc = convert_getcast<IContactMechanical>(con);
1368 pos->push_back(convert_getcast<IPieceMechanical>(mc->getEnd2())->getPosition());
1369 rad->push_back(br);
1370 val->push_back(mc->getEnd2()->getIThing()->getID());
1371 }
1372 }
1373
1374#ifdef THREED
1375
1376 void ContactModelFlatJoint::getDiskList(const IContact *con,std::vector<DVect> *pos,std::vector<DVect> *normal,std::vector<double> *radius,std::vector<double> *val) {
1377 assert(pos);
1378 assert(normal);
1379 assert(radius);
1380 assert(val);
1381 if (!orientProps_)
1382 return;
1383 // plot the contact plane right in the middle of the 2 normals
1384 double rad = fj_rmul()*rmin();
1385 DVect axis1 = orientProps_->orient1_.rotate(orientProps_->origNormal_);
1386 DVect axis2 = orientProps_->orient2_.rotate(orientProps_->origNormal_);
1387 DVect norm = ((axis1.unit()+axis2.unit())*0.5).unit();
1388 pos->push_back(con->getPosition());
1389 normal->push_back(norm);
1390 radius->push_back(rad);
1391 const IContactMechanical *mc = convert_getcast<IContactMechanical>(con);
1392 val->push_back(mc->getLocalForce().mag());
1393 }
1394
1395#endif
1396
1397 void ContactModelFlatJoint::getCylinderList(const IContact *con,std::vector<DVect> *bot,std::vector<DVect> *top,std::vector<double> *radlow,std::vector<double> *radhi,std::vector<double> *val) {
1398 assert(bot);
1399 assert(top);
1400 assert(radlow);
1401 assert(radhi);
1402 assert(val);
1403 if (!orientProps_)
1404 return;
1405 const IContactMechanical *mc = convert_getcast<IContactMechanical>(con);
1406 double br = mc->getEnd1Curvature().y(), br2 = mc->getEnd2Curvature().y();
1407 if (userArea_) {
1408#ifdef THREED
1409 br = std::sqrt(userArea_ / dPi);
1410#else
1411 br = userArea_ / 2.0;
1412#endif
1413 br = 1. / br;
1414 br2 = br;
1415 }
1416
1417 double cgap = mc->getGap();
1418 if (br > 0 && br2 > 0) {
1419 br = 1.0 / br;
1420 br2 = 1.0 / br2;
1421 double rad = fj_rmul()*rmin();
1422 DVect bp = convert_getcast<IPieceMechanical>(mc->getEnd1())->getPosition();
1423 DVect axis = orientProps_->orient1_.rotate(orientProps_->origNormal_);
1424 bot->push_back(axis.unit()*(br-0.5*(gap().x()- cgap))+bp);
1425 top->push_back(bp);
1426 radlow->push_back(rad);
1427 radhi->push_back(0.0);
1428 val->push_back(mc->getEnd1()->getIThing()->getID());
1429 bp = convert_getcast<IPieceMechanical>(mc->getEnd2())->getPosition();
1430 axis = orientProps_->orient2_.rotate(orientProps_->origNormal_);
1431 bot->push_back(axis.unit()*(br2-0.5*(gap().x()-cgap))*(-1.0)+bp);
1432 top->push_back(bp);
1433 radlow->push_back(rad);
1434 radhi->push_back(0.0);
1435 val->push_back(mc->getEnd2()->getIThing()->getID());
1436 }
1437 }
1438
1439 DVect ContactModelFlatJoint::getForce() const {
1440 DVect ret(fj_f_);
1441 return ret;
1442 }
1443
1444 DAVect ContactModelFlatJoint::getMomentOn1(const IContactMechanical *c) const {
1445 DAVect ret(fj_m_);
1446 if (c) {
1447 DVect force = getForce();
1448 c->updateResultingTorqueOn1Local(force,&ret);
1449 }
1450 return ret;
1451 }
1452
1453 DAVect ContactModelFlatJoint::getMomentOn2(const IContactMechanical *c) const {
1454 DAVect ret(fj_m_);
1455 if (c) {
1456 DVect force = getForce();
1457 c->updateResultingTorqueOn2Local(force,&ret);
1458 }
1459 return ret;
1460 }
1461
1462 DAVect ContactModelFlatJoint::getModelMomentOn1() const {
1463 DAVect ret(fj_m_);
1464 return ret;
1465 }
1466
1467 DAVect ContactModelFlatJoint::getModelMomentOn2() const {
1468 DAVect ret(fj_m_);
1469 return ret;
1470 }
1471
1472 void ContactModelFlatJoint::objectPropsTypes(std::vector<std::pair<QString,InfoTypes>> *ret) const {
1473 ret->clear();
1474 ret->push_back({"fj_nr",ScalarInfo});
1475 ret->push_back({"fj_elem",ScalarInfo});
1476 ret->push_back({"fj_kn",ScalarInfo});
1477 ret->push_back({"fj_ks",ScalarInfo});
1478 ret->push_back({"fj_fric",ScalarInfo});
1479 ret->push_back({"fj_emod",ScalarInfo});
1480 ret->push_back({"fj_kratio",ScalarInfo});
1481 ret->push_back({"fj_rmul",ScalarInfo});
1482 ret->push_back({"fj_radius",ScalarInfo});
1483 ret->push_back({"fj_gap0",ScalarInfo});
1484 ret->push_back({"fj_ten",ScalarInfo});
1485 ret->push_back({"fj_coh",ScalarInfo});
1486 ret->push_back({"fj_fa",ScalarInfo});
1487 ret->push_back({"fj_force",VectorInfo});
1488 ret->push_back({"fj_moment",VectorInfo});
1489 ret->push_back({"fj_state",ScalarInfo});
1490 ret->push_back({"fj_slip",ScalarInfo});
1491 ret->push_back({"fj_mtype",ScalarInfo});
1492 ret->push_back({"fj_area",ScalarInfo});
1493 ret->push_back({"fj_egap",ScalarInfo});
1494 ret->push_back({"fj_gap",ScalarInfo});
1495 ret->push_back({"fj_sigma",ScalarInfo});
1496 ret->push_back({"fj_tau",ScalarInfo});
1497 ret->push_back({"fj_shear",ScalarInfo});
1498#ifdef THREED
1499 ret->push_back({"fj_nal",ScalarInfo});
1500#endif
1501 ret->push_back({"fj_relbr",VectorInfo});
1502 ret->push_back({"fj_cen",VectorInfo});
1503 ret->push_back({"fj_track",ScalarInfo});
1504 ret->push_back({"user_area",ScalarInfo});
1505 ret->push_back({"fj_cohres",ScalarInfo});
1506 ret->push_back({"fj_resmode",ScalarInfo});
1507
1508 }
1509
1510 void ContactModelFlatJoint::objectPropValues(std::vector<double> *ret,const IContact *con) const {
1511 ret->clear();
1512 ret->push_back(fj_nr());
1513 ret->push_back(fj_elem());
1514 ret->push_back(fj_kn());
1515 ret->push_back(fj_ks());
1516 ret->push_back(fj_fric());
1517 const IContactMechanical *c(convert_getcast<IContactMechanical>(con));
1518 double rsum(0.0);
1519 if (c->getEnd1Curvature().y())
1520 rsum += 1.0/c->getEnd1Curvature().y();
1521 if (c->getEnd2Curvature().y())
1522 rsum += 1.0/c->getEnd2Curvature().y();
1523 if (userArea_) {
1524#ifdef THREED
1525 rsum = std::sqrt(userArea_ / dPi);
1526#else
1527 rsum = userArea_ / 2.0;
1528#endif
1529 rsum += rsum;
1530 }
1531 ret->push_back(fj_kn_ * rsum);
1532 ret->push_back((fj_ks_ == 0.0 ) ? 0.0 : (fj_kn_/fj_ks_));
1533 ret->push_back(fj_rmul());
1534 ret->push_back(rbar());
1535 ret->push_back(fj_gap0());
1536 ret->push_back(fj_ten());
1537 ret->push_back(fj_coh());
1538 ret->push_back(fj_fa());
1539 ret->push_back(fj_f().mag());
1540 ret->push_back(fj_m().mag());
1541 ret->push_back(bmode_[fj_elem()-1]);
1542 ret->push_back(smode_[fj_elem()-1]);
1543 ret->push_back(getmType());
1544 ret->push_back(a_[fj_elem()-1]);
1545 ret->push_back(egap_[fj_elem()-1]);
1546 ret->push_back(gap().x());
1547 ret->push_back(-f_[fj_elem()-1].x() / a_[fj_elem()-1]);
1548 ret->push_back(f_[fj_elem()-1].y() / a_[fj_elem()-1]);
1549 ret->push_back(tauC((-f_[fj_elem()-1].x() / a_[fj_elem()-1]),(bmode_[fj_elem()-1]==3)));
1550#ifdef THREED
1551 ret->push_back(fj_na());
1552#endif
1553 ret->push_back(DVect2(theta(),thetaM()).mag());
1554 ret->push_back(getRelElemPos(con,fj_elem()-1).mag());
1555 ret->push_back(orientProps_ ? true : false);
1556 ret->push_back(userArea_);
1557 ret->push_back(fj_cohres());
1558 ret->push_back(fj_resmode());
1559 }
1560
1561} // namespace itascaxd
1562
1563// EoF
Was this helpful? ... | Itasca Software © 2024, Itasca | Updated: Dec 19, 2024 |