Systems of Units for Thermal Analysis
All thermal quantities must be given in a consistent system of units.
No conversions are performed by the program. The tables below present examples of consistent sets of units for thermal parameters.
Table 1: System of SI units for thermal problems
Property |
Units |
|
|
|
Length |
m |
m |
m |
cm |
Density |
kg/m3 |
103 kg/m3 |
106 kg/m3 |
106 g/cm3 |
Stress |
Pa |
kPa |
MPa |
bar |
Temperature |
K |
K |
K |
K |
Time |
s |
s |
s |
s |
Specific Heat |
J/(kg K) |
10-3 J/(kg K) |
10-6 J/(kg K) |
10-6 cal/(g K) |
Thermal Conductivity |
(W/mK) |
(W/mK) |
(W/mK) |
(cal/s)/cm2 K4 |
Convective Heat-Trans. Coefficient |
(W/m2 K) |
(W/m2 K) |
(W/m2 K) |
(cal/s)/(cm2 K) |
Radiative Heat-Trans. Coefficient |
(W/m2 K4) |
(W/m2 K4) |
(W/m2 K4) |
(cal/s)/cm2 K4 |
Flux Strength |
W/m2 |
W/m2 |
W/m2 |
(cal/s)/cm2 |
Source Strength |
W/m3 |
W/m3 |
W/m3 |
(cal/s)/cm3 |
Decay Constant |
s-1 |
s-1 |
s-1 |
s-1 |
Table 2: System of imperial units for thermal problems
Property |
Units |
|
Length |
ft |
in |
Density |
slugs/ft3 |
snails/in3 |
Stress |
lbf |
psi |
Temperature |
R |
R |
Time |
hr |
hr |
Specific Heat |
(32.17)-1 Btu/(lb R) |
(32.17)-1 Btu/(lb R) |
Thermal Conductivity |
(Btu/hr)/(ft R) |
(Btu/hr)/(in R) |
Convective Heat-Trans. Coefficient |
(Btu/hr)/(ft2 R) |
(Btu/hr)/(in2 R) |
Radiative Heat-Trans. Coefficient |
(Btu/hr)/(ft2 R4) |
(Btu/hr)/(in2 R4) |
Flux Strength |
(Btu/hr)/ft2 |
(Btu/hr)/in2 |
Source Strength |
(Btu/hr)/ft3 |
(Btu/hr)/in3 |
Decay Constant |
hr-1 |
hr-1 |
where: |
1K |
= 1.8 R; |
|
1J |
= 0.239 cal = 9.48 × 10-4 Btu; |
|
1J/kg K |
= 2.39 × 10-4 btu/lb R; |
|
1W |
= 1 J/s = 0.239 cal/s = 3.412 Btu/hr; |
|
1W/m K |
= 0.578 Btu/(ft/hr R); and |
|
1W/m2 K |
= 0.176 Btu/ft2 hr R. |
Note that temperatures may be quoted in the more common units of °C (instead of K) or °F (instead of R),
where: |
Temp(°C) |
= [Temp(°F) - 32]×(5/9); |
|
Temp(°F) |
= [1.8 Temp(°C) + 32]; |
|
Temp(°C) |
= Temp(K) - 273; and |
|
Temp(°F) |
= Temp(R) - 460. |