Flat-Joint Model Implementation
See this page for the documentation of this contact model.
contactmodelflatjoint.h
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 | #pragma once
// contactmodelflatjoint.h
#include "contactmodel/src/contactmodelmechanical.h"
#ifdef FLATJOINT_LIB
# define FLATJOINT_EXPORT EXPORT_TAG
#elif defined(NO_MODEL_IMPORT)
# define FLATJOINT_EXPORT
#else
# define FLATJOINT_EXPORT IMPORT_TAG
#endif
namespace cmodelsxd {
using namespace itasca;
class ContactModelFlatJoint : public ContactModelMechanical {
public:
enum PropertyKeys {
kwFjNr=1
, kwFjElem
, kwFjKn
, kwFjKs
, kwFjFric
, kwFjEmod
, kwFjKRatio
, kwFjRmul
, kwFjRadius
, kwFjGap0
, kwFjTen
, kwFjCoh
, kwFjFa
, kwFjF
, kwFjM
, kwFjState
, kwFjSlip
, kwFjMType
, kwFjA
, kwFjEgap
, kwFjGap
, kwFjNstr
, kwFjSstr
, kwFjSs
#ifdef THREED
, kwFjNa
#endif
, kwFjRelBr
, kwFjCen
, kwFjTrack
, kwUserArea
};
FLATJOINT_EXPORT ContactModelFlatJoint();
FLATJOINT_EXPORT virtual ~ContactModelFlatJoint();
virtual void copy(const ContactModel *c);
virtual void archive(ArchiveStream &);
virtual QString getName() const { return "flatjoint"; }
virtual void setIndex(int i) { index_=i;}
virtual int getIndex() const {return index_;}
virtual QString getProperties() const { return "fj_nr"
",fj_elem"
",fj_kn"
",fj_ks"
",fj_fric"
",fj_emod"
",fj_kratio"
",fj_rmul"
",fj_radius"
",fj_gap0"
",fj_ten"
",fj_coh"
",fj_fa"
",fj_force"
",fj_moment"
",fj_state"
",fj_slip"
",fj_mtype"
",fj_area"
",fj_egap"
",fj_gap"
",fj_sigma"
",fj_tau"
",fj_shear"
#ifdef THREED
",fj_nal"
#endif
",fj_relbr"
",fj_cen"
",fj_track"
",user_area"
;}
enum EnergyKeys { kwEStrain=1,kwESlip};
virtual QString getEnergies() const { return "energy-strain,energy-slip";}
virtual double getEnergy(uint i) const; // Base 1
virtual bool getEnergyAccumulate(uint i) const; // Base 1
virtual void setEnergy(uint i,const double &d); // Base 1
virtual void activateEnergy() { if (energies_) return; energies_ = NEWC(Energies());}
virtual bool getEnergyActivated() const {return (energies_ !=0);}
enum FishCallEvents {fActivated=0,fBondBreak,fBroken,fSlipChange};
virtual QString getFishCallEvents() const { return "contact_activated,bond_break,broken,all_slip_change"; }
virtual QVariant getProperty(uint i,const IContact *) const;
virtual bool getPropertyGlobal(uint i) const;
virtual bool setProperty(uint i,const QVariant &v,IContact *);
virtual bool getPropertyReadOnly(uint i) const;
virtual bool supportsInheritance(uint ) const { return false; }
enum MethodKeys { kwBond=1, kwUnbond, KwDeformability, KwUpdateGeom, kwArea, kwInitialize};
virtual QString getMethods() const { return "bond"
",unbond"
",deformability"
",update_geometry"
",area"
",initialize"
;}
virtual QString getMethodArguments(uint i) const;
virtual bool setMethod(uint i,const QVector<QVariant> &vl,IContact *con=0); // Base 1 - returns true if timestep contributions need to be updated
virtual uint getMinorVersion() const;
virtual bool validate(ContactModelMechanicalState *state,const double ×tep);
virtual bool endPropertyUpdated(const QString &,const IContactMechanical *) { return false; }
virtual bool forceDisplacementLaw(ContactModelMechanicalState *state,const double ×tep);
virtual DVect2 getEffectiveTranslationalStiffness() const { return effectiveTranslationalStiffness();}
virtual DAVect getEffectiveRotationalStiffness() const { return effectiveRotationalStiffness(); }
virtual ContactModelFlatJoint *clone() const { return NEWC(ContactModelFlatJoint()); }
virtual double getActivityDistance() const {return 0.0;}
virtual bool isOKToDelete() const { return !isBonded(); }
virtual void resetForcesAndMoments() { fj_f(DVect(0.0)); fj_m(DAVect(0.0)); for (int i=0; i<f_.size(); ++i) f_[i] = DVect(0.0); }
virtual void setForce(const DVect &v,IContact *);
virtual void setArea(const double &d) { userArea_ = d; }
virtual bool checkActivity(const double &inGap);
//virtual bool isSliding() const { return fj_s_; }
virtual bool isBonded() const { FOR(it,bmode_) if ((*it) == 3) return true; return false; }
int fj_nr() const {return fj_nr_;}
void fj_nr(int d) { fj_nr_= d;}
#ifdef THREED
int fj_n() const { return fj_na_ * fj_nr_; }
int fj_na() const {return fj_na_;}
void fj_na(int d) { fj_na_= d;}
#else
int fj_n() const { return fj_nr_; }
#endif
int fj_elem() const {return fj_elem_;}
void fj_elem(int d) { fj_elem_= d;}
const double & fj_kn() const {return fj_kn_;}
void fj_kn(const double &d) { fj_kn_ = d;}
const double & fj_ks() const {return fj_ks_;}
void fj_ks(const double &d) { fj_ks_ = d;}
const double & fj_fric() const {return fj_fric_;}
void fj_fric(const double &d) { fj_fric_ = d;}
const double & fj_rmul() const {return fj_rmul_;}
void fj_rmul(const double &d) { fj_rmul_ = d;}
const double & fj_gap0() const {return fj_gap0_;}
void fj_gap0(const double &d) { fj_gap0_ = d;}
const double & fj_ten() const {return fj_ten_;}
void fj_ten(const double &d) { fj_ten_ = d;}
const double & fj_coh() const {return fj_coh_;}
void fj_coh(const double &d) { fj_coh_ = d;}
const double & fj_fa() const {return fj_fa_;}
void fj_fa(const double &d) { fj_fa_ = d;}
const DVect & fj_f() const {return fj_f_;}
void fj_f(const DVect &f) { fj_f_=f;}
const DAVect & fj_m() const {return fj_m_;}
void fj_m(const DAVect &f) { fj_m_=f;}
const DAVect & fj_m_set() const {return fj_m_set_;}
void fj_m_set(const DAVect &f) { fj_m_set_=f;}
const double & rmin() const {return rmin_;}
void rmin(const double &d) { rmin_ = d;}
const double & rbar() const {return rbar_;}
void rbar(const double &d) { rbar_ = d;}
const double & atot() const {return atot_;}
void atot(const double &d) { atot_ = d;}
const bool propsFixed() const {return propsFixed_; }
void propsFixed(bool d) { propsFixed_ = d;}
int mType() const {return mType_; }
void mType(int d) { mType_ = d;}
const DVect & gap() const {return gap_; }
void gap(const DVect &d) { gap_ = d;}
const double & theta() const {return theta_; }
void theta(const double & d) { theta_ = d;}
#ifdef THREED
const double & thetaM() const {return thetaM_; }
void thetaM(const double & d) { thetaM_ = d;}
#else
double thetaM() const {return 0.0;}
#endif
bool hasEnergies() const {return energies_ ? true:false;}
double estrain() const {return hasEnergies() ? energies_->estrain_: 0.0;}
void estrain(const double &d) { if(!hasEnergies()) return; energies_->estrain_=d;}
double eslip() const {return hasEnergies() ? energies_->eslip_: 0.0;}
void eslip(const double &d) { if(!hasEnergies()) return; energies_->eslip_=d;}
uint inheritanceField() const {return inheritanceField_;}
void inheritanceField(uint i) {inheritanceField_ = i;}
const DVect2 & effectiveTranslationalStiffness() const {return effectiveTranslationalStiffness_;}
void effectiveTranslationalStiffness(const DVect2 &v ) {effectiveTranslationalStiffness_=v;}
const DAVect & effectiveRotationalStiffness() const {return effectiveRotationalStiffness_;}
void effectiveRotationalStiffness(const DAVect &v ) {effectiveRotationalStiffness_=v;}
// For contact specific plotting
virtual void getSphereList(const IContact *con,std::vector<DVect> *pos,std::vector<double> *rad,std::vector<double> *val);
#ifdef THREED
virtual void getDiskList(const IContact *con,std::vector<DVect> *pos,std::vector<DVect> *normal,std::vector<double> *radius,std::vector<double> *val);
#endif
virtual void getCylinderList(const IContact *con,std::vector<DVect> *bot,std::vector<DVect> *top,std::vector<double> *radlow,std::vector<double> *radhi,std::vector<double> *val);
/// Return the total force that the contact model holds.
virtual DVect getForce(const IContactMechanical *) const;
/// Return the total moment on 1 that the contact model holds
virtual DAVect getMomentOn1(const IContactMechanical *) const;
/// Return the total moment on 1 that the contact model holds
virtual DAVect getMomentOn2(const IContactMechanical *) const;
private:
static int index_;
struct Energies {
Energies() : estrain_(0.0), eslip_(0.0) {}
double estrain_; // elastic energy stored in contact
double eslip_; // work dissipated by friction
};
void updateEffectiveStiffness(ContactModelMechanicalState *state);
// inheritance fields
quint32 inheritanceField_;
int fj_nr_; // radial number of elements >= 1 (total in 2D)
#ifdef THREED
int fj_na_; // circumferential number of elements >= 3
#endif
int fj_elem_; // Element to be queried
double fj_kn_; // normal stiffness
double fj_ks_; // shear stiffness
double fj_fric_; // Coulomb friction coefficient
double fj_rmul_; // Radius multiplier
double fj_gap0_; // Initial gap
double fj_ten_; // Tensile strength
double fj_coh_; // Cohesive strength
double fj_fa_; // Friction angle
DVect fj_f_; // Force carried in the model
DAVect fj_m_; // Moment carried in the model
DAVect fj_m_set_; // When initializing forces then need an extra moment term
// Area related quantities
double rmin_; // min(Ra,Rb) where Ra & Rb are particle radii
double rbar_; // flat-joint radius [m]
double atot_; // flat-joint area [m^2]
std::vector<double> a_; // cross-sectional area of elem[fj_elem-1] [m^2]
#ifdef THREED
std::vector<DVect2> rBarl_; // centroid relative position of elem[fj_elem-1] [m] (3D)
#else
std::vector<double> rBarl_; // centroid relative position of elem[fj_elem-1] [m] (2D)
#endif
void setAreaQuantities(); // Set Rbar, Atot and A[]
DVect getRelElemPos(const IContact*,int ) const; // Return the relative location of element i
void setRelElemPos(const IContact*,int ,const DVect &); // Set the relative location of element i
bool propsFixed_; // {Rmul, N, G, bstate, mType} fixed, cannot reset
int mType_; // initial microstructural type
int getmType() const; // {1,2,3,4}={bonded, gapped, slit, other}
std::vector<int> bmode_; // bond mode - 0 unbonded, 1 failed in tension, 2 failed in shear, 3 bonded
std::vector<bool> smode_; // slip mode
bool Bonded(int e) const { return bmode_[e-1] == 3 ? true : false; }
// Set bstate and bmode (can only bond if fj_gap0_==0.0)
void bondElem(int iSeg,bool bBond);
// Set bstate & bmode
void breakBond(int iSeg,int fmode,ContactModelMechanicalState *state);
void slipChange(int iSeg,bool smode,ContactModelMechanicalState *state);
// For use in 2D only!
double tauC(const double &dSig,bool bBonded) const; // shear strength (positive) [N/m^2]
// INTERFACE RESPONSE QUANTITIES:
DVect gap_; // total relative displacement [m]
double theta_; // total relative rotation [rad]
#ifdef THREED
double thetaM_; // total relative rotation [rad]
double thbMag() const { return sqrt(theta_*theta_ + thetaM_*thetaM_); }
// unit-vector xi of middle surface system xi-eta
// (If both thb_l and thb_m are zero, then xi is undefined
// and returns zero for both components.)
double xi(int comp /* component (l,m) = (1,2) */) const;
#endif
std::vector<double> egap_; // gap at centroid of elem[fj_elem-1] [N]
std::vector<DVect> f_; // force on elem[fj_elem-1] [N]
void initVectors(); // Resize and zero all vector types based on current value of N
#ifdef TWOD
double gap(const double &x) const; // Gap (g>0 is open) along the interface, x in [0, 2*Rbar]
#else
double gap(const double &rl,const double &rm) const; // Gap (g>0 is open) gap at relative position (l,m) [m]
double sigBar( int e /* element, e = 1,2,...,Nel */ ) const; // normal stress at centroid of elem[eN-1] [N/m^2]
double tauBar( int e /* element, e = 1,2,...,Nel */ ) const; // shear stress at centroid of elem[eN-1] [N/m^2]
#endif
double computeStrainEnergy(int e /* element, e = 1,2,...,Nel */) const; // strain energy in elem[eN-1]
// For use in 2D only! Segment normal stress
double computeSig(const double &g0, /* gap at left end */
const double &g1, /* gap at right end */
const double &rbar, /* length is 2*rbar */
const double &dA, /* area */
bool bBonded /* bond state */
) const;
// For use in 2D only! Segment moment
double computeM(const double &g0, /* gap at left end */
const double &g1, /* gap at right end */
const double &rbar, /* length is 2*rbar */
bool bBonded /* bond state */
) const;
// For use in 2D only! getCase used by ComputeSig and ComputeM
int getCase(const double &g0, /* gap at left end */
const double &g1 /* gap at right end */
) const;
// Segment elastic shear-displacement increment, which is portion of
// increment that occurs while gap is negative.
double delUse(const double &gapStart, /* gap at start of FDlaw */
const double &gapEnd, /* gap at end of FDlaw */
bool bBonded, /* bond state */
const double &delUs /* shear displ. increment */
) const;
double userArea_; // Area as specified by the user
Energies * energies_; // energies
DVect2 effectiveTranslationalStiffness_;
DAVect effectiveRotationalStiffness_;
struct orientProps {
orientProps() : origNormal_(DVect(0.0)) {}
Quat orient1_;
Quat orient2_;
DVect origNormal_;
};
orientProps *orientProps_;
};
} // namespace itascaxd
// EoF
|
contactmodelflatjoint.cpp
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 | // contactmodelflatjoint.cpp
#include "contactmodelflatjoint.h"
#include "module/interface/icontactmechanical.h"
#include "module/interface/icontact.h"
#include "module/interface/ipiecemechanical.h"
#include "module/interface/ipiece.h"
#include "module/interface/ifishcalllist.h"
#include "../version.txt"
#include "base/src/basetoqt.h"
#include "utility/src/tptr.h"
#include "shared/src/mathutil.h"
#include "kernel/interface/iprogram.h"
#include "module/interface/icontactthermal.h"
#ifdef FLATJOINT_LIB
int __stdcall DllMain(void *,unsigned, void *)
{
return 1;
}
extern "C" EXPORT_TAG const char *getName()
{
#if DIM==3
return "contactmodelmechanical3dflatjoint";
#else
return "contactmodelmechanical2dflatjoint";
#endif
}
extern "C" EXPORT_TAG unsigned getMajorVersion()
{
return MAJOR_VERSION;
}
extern "C" EXPORT_TAG unsigned getMinorVersion()
{
return MINOR_VERSION;
}
extern "C" EXPORT_TAG void *createInstance()
{
cmodelsxd::ContactModelFlatJoint *m = NEWC(cmodelsxd::ContactModelFlatJoint());
return (void *)m;
}
#endif // FLATJOINT_LIB
namespace cmodelsxd {
static const quint32 fjKnMask = 0x00002; // Base 1!
static const quint32 fjKsMask = 0x00004;
static const quint32 fjFricMask = 0x00008;
using namespace itasca;
int ContactModelFlatJoint::index_ = -1;
UInt ContactModelFlatJoint::getMinorVersion() const { return MINOR_VERSION;}
ContactModelFlatJoint::ContactModelFlatJoint() : inheritanceField_(fjKnMask|fjKsMask|fjFricMask)
, fj_nr_(2)
#ifdef THREED
, fj_na_(4)
#endif
, fj_elem_(1)
, fj_kn_(0.0)
, fj_ks_(0.0)
, fj_fric_(0.0)
, fj_rmul_(1.0)
, fj_gap0_(0.0)
, fj_ten_(0.0)
, fj_coh_(0.0)
, fj_fa_(0.0)
, fj_f_(0.0)
, fj_m_(0.0)
, fj_m_set_(0.0)
, rmin_(1.0)
, rbar_(0.0)
, atot_(0.0)
, a_(2)
, rBarl_(2)
, propsFixed_(false)
, mType_(3)
, bmode_(2)
, smode_(2)
, gap_(0.0)
, theta_(0.0)
#ifdef THREED
, thetaM_(0.0)
#endif
, egap_(2)
, f_(2)
, userArea_(0)
, energies_(0)
, effectiveTranslationalStiffness_(DVect2(0.0))
, effectiveRotationalStiffness_(DAVect(0.0))
, orientProps_(0)
{
initVectors();
setAreaQuantities();
//setFromParent(ContactModelMechanicalList::instance()->find(getName()));
}
ContactModelFlatJoint::~ContactModelFlatJoint() {
if (orientProps_)
delete orientProps_;
if (energies_)
delete energies_;
}
void ContactModelFlatJoint::archive(ArchiveStream &stream) {
stream & fj_nr_;
#ifdef THREED
stream & fj_na_;
#endif
stream & fj_elem_;
stream & fj_kn_;
stream & fj_ks_;
stream & fj_fric_;
stream & fj_rmul_;
stream & fj_gap0_;
stream & fj_ten_;
stream & fj_coh_;
stream & fj_fa_;
stream & fj_f_;
stream & fj_m_;
stream & rmin_;
stream & rbar_;
stream & atot_;
stream & a_;
stream & rBarl_;
stream & propsFixed_;
stream & mType_;
stream & bmode_;
stream & smode_;
stream & gap_;
stream & theta_;
#ifdef THREED
stream & thetaM_;
#endif
stream & egap_;
stream & f_;
if (stream.getArchiveState()==ArchiveStream::Save) {
bool b = false;
if (orientProps_) {
b = true;
stream & b;
stream & orientProps_->orient1_;
stream & orientProps_->orient2_;
stream & orientProps_->origNormal_;
} else
stream & b;
b = false;
if (energies_) {
b = true;
stream & b;
stream & energies_->estrain_;
stream & energies_->eslip_;
} else
stream & b;
} else {
bool b(false);
stream & b;
if (b) {
if (!orientProps_)
orientProps_ = NEWC(orientProps());
stream & orientProps_->orient1_;
stream & orientProps_->orient2_;
stream & orientProps_->origNormal_;
}
stream & b;
if (b) {
if (!energies_)
energies_ = NEWC(Energies());
stream & energies_->estrain_;
stream & energies_->eslip_;
}
}
stream & inheritanceField_;
stream & effectiveTranslationalStiffness_;
stream & effectiveRotationalStiffness_;
if (stream.getArchiveState()==ArchiveStream::Save || stream.getRestoreVersion() > 1)
stream & userArea_;
if (stream.getArchiveState()==ArchiveStream::Save || stream.getRestoreVersion() > 2)
stream & fj_m_set_;
}
void ContactModelFlatJoint::copy(const ContactModel *cm) {
ContactModelMechanical::copy(cm);
const ContactModelFlatJoint *in = dynamic_cast<const ContactModelFlatJoint*>(cm);
if (!in) throw std::runtime_error("Internal error: contact model dynamic cast failed.");
fj_nr(in->fj_nr());
#ifdef THREED
fj_na(in->fj_na());
#endif
fj_elem(in->fj_elem());
fj_kn(in->fj_kn());
fj_ks(in->fj_ks());
fj_fric(in->fj_fric());
fj_rmul(in->fj_rmul());
fj_gap0(in->fj_gap0());
fj_ten(in->fj_ten());
fj_coh(in->fj_coh());
fj_fa(in->fj_fa());
fj_f(in->fj_f());
fj_m(in->fj_m());
fj_m_set(in->fj_m_set());
rmin(in->rmin());
rbar(in->rbar());
atot(in->atot());
a_ = in->a_;
rBarl_ = in->rBarl_;
propsFixed(in->propsFixed());
mType(in->mType());
bmode_ = in->bmode_;
smode_ = in->smode_;
gap(in->gap());
theta(in->theta());
#ifdef THREED
thetaM(in->thetaM());
#endif
egap_ = in->egap_;
f_ = in->f_;
if (in->orientProps_) {
if (!orientProps_)
orientProps_ = NEWC(orientProps());
orientProps_->orient1_ = in->orientProps_->orient1_;
orientProps_->orient2_ = in->orientProps_->orient2_;
orientProps_->origNormal_ = in->orientProps_->origNormal_;
}
if (in->hasEnergies()) {
if (!energies_)
energies_ = NEWC(Energies());
estrain(in->estrain());
eslip(in->eslip());
}
userArea_ = in->userArea_;
inheritanceField(in->inheritanceField());
effectiveTranslationalStiffness(in->effectiveTranslationalStiffness());
effectiveRotationalStiffness(in->effectiveRotationalStiffness());
}
QVariant ContactModelFlatJoint::getProperty(uint i,const IContact *con) const {
QVariant var;
switch (i) {
case kwFjNr : return fj_nr();
case kwFjElem : return fj_elem();
case kwFjKn : return fj_kn();
case kwFjKs : return fj_ks();
case kwFjFric : return fj_fric();
case kwFjEmod : {
const IContactMechanical *c(convert_getcast<IContactMechanical>(con));
if (c ==nullptr) return 0.0;
double rsum(0.0);
if (c->getEnd1Curvature().y())
rsum += 1.0/c->getEnd1Curvature().y();
if (c->getEnd2Curvature().y())
rsum += 1.0/c->getEnd2Curvature().y();
if (userArea_) {
#ifdef THREED
rsum = std::sqrt(userArea_ / dPi);
#else
rsum = userArea_ / 2.0;
#endif
rsum += rsum;
}
return (fj_kn_ * rsum);
}
case kwFjKRatio : return (fj_ks_ == 0.0 ) ? 0.0 : (fj_kn_/fj_ks_);
case kwFjRmul : return fj_rmul();
case kwFjRadius : return rbar();
case kwFjGap0 : return fj_gap0();
case kwFjTen : return fj_ten();
case kwFjCoh : return fj_coh();
case kwFjFa : return fj_fa();
case kwFjF : var.setValue(fj_f()); return var;
case kwFjM : var.setValue(fj_m()); return var;
case kwFjState : return bmode_[fj_elem()-1];
case kwFjSlip : return smode_[fj_elem()-1];
case kwFjMType : return getmType();
case kwFjA : return a_[fj_elem()-1];
case kwFjEgap : return egap_[fj_elem()-1];
case kwFjGap : return gap().x();
case kwFjNstr : return -f_[fj_elem()-1].x() / a_[fj_elem()-1];
case kwFjSstr : return f_[fj_elem()-1].y() / a_[fj_elem()-1];
case kwFjSs : return tauC((-f_[fj_elem()-1].x() / a_[fj_elem()-1]),(bmode_[fj_elem()-1]==3));
case kwFjRelBr : var.setValue(DVect2(theta(),thetaM())); return var;
case kwFjCen : var.setValue(getRelElemPos(con,fj_elem()-1)); return var;
#ifdef THREED
case kwFjNa : return fj_na();
#endif
case kwFjTrack : var.setValue(orientProps_ ? true : false); return var;
case kwUserArea : return userArea_;
}
assert(0);
return QVariant();
}
bool ContactModelFlatJoint::getPropertyGlobal(uint i) const {
switch (i) {
case kwFjF:
return false;
}
return true;
}
bool ContactModelFlatJoint::setProperty(uint i,const QVariant &v,IContact *c) {
bool ok(true);
switch (i) {
case kwFjNr: {
if (!propsFixed()) {
int val(v.toInt(&ok));
if (!ok || val < 1)
throw Exception("fj_nr must be an integer greater than 0.");
fj_nr(val);
if (fj_elem() > fj_n())
fj_elem(fj_n());
initVectors();
setAreaQuantities();
} else
throw Exception("fj_nr cannot be modified.");
return true;
}
case kwFjElem: {
int val(v.toInt(&ok));
if (!ok || val < 1 || val > fj_n())
throw Exception("fj_elem must be an integer between 1 and %1.",fj_n());
fj_elem(val);
return false;
}
case kwFjKn: {
double val(v.toDouble(&ok));
if (!ok || val<0.0)
throw Exception("fj_kn must be a positive double.");
fj_kn(val);
return true;
}
case kwFjKs: {
double val(v.toDouble(&ok));
if (!ok || val<0.0)
throw Exception("fj_ks must be a positive double.");
fj_ks(val);
return true;
}
case kwFjFric: {
double val(v.toDouble(&ok));
if (!ok || val<0.0)
throw Exception("fj_fric must be a positive double.");
fj_fric(val);
return false;
}
case kwFjRmul: {
if (!propsFixed()) {
double val(v.toDouble(&ok));
if (!ok || val<0.01)
throw Exception("fj_rmul must be a double greater than or equal to 0.01.");
fj_rmul(val);
setAreaQuantities();
return true;
} else
throw Exception("fj_rmul cannot be modified.");
return false;
}
case kwFjGap0: {
if (!propsFixed()) {
double val(v.toDouble(&ok));
if (!ok || val<0.0)
throw Exception("fj_gap0 must be a positive double.");
fj_gap0(val);
if (fj_gap0() > 0.0) {
for(int i=1; i<=fj_n(); ++i)
bondElem(i,false);
// surfaces are parallel w/ gap G
DVect temp(0.0);
temp.rx() = fj_gap0();
gap(temp);
theta(0.0);
}
} else
throw Exception("fj_gap0 cannot be modified.");
return true;
}
case kwFjTen: {
double val(v.toDouble(&ok));
if (!ok || val<0.0)
throw Exception("fj_ten must be a positive double.");
fj_ten(val);
return false;
}
case kwFjFa: {
double val(v.toDouble(&ok));
if (!ok || val<0.0)
throw Exception("fj_fa must be a positive double.");
fj_fa(val);
return false;
}
case kwFjCoh: {
double val(v.toDouble(&ok));
if (!ok || val<0.0)
throw Exception("fj_coh must be a positive double.");
fj_coh(val);
return false;
}
case kwFjA: {
double val(v.toDouble(&ok));
if (!ok || val<0.0)
throw Exception("fj_area must be a positive double.");
a_[fj_elem()-1] = val;
return false;
}
case kwFjNstr: {
double val(v.toDouble(&ok));
if (!ok || val<0.0)
throw Exception("fj_sigma must be a positive double.");
f_[fj_elem()-1].rx() = -val * a_[fj_elem()-1];
return false;
}
case kwFjSstr: {
double val(v.toDouble(&ok));
if (!ok || val<0.0)
throw Exception("fj_tau must be a positive double.");
f_[fj_elem()-1].ry() = val * a_[fj_elem()-1];
return false;
}
#ifdef THREED
case kwFjNa: {
if (!propsFixed()) {
int val(v.toInt(&ok));
if (!ok || val < 1)
throw Exception("fj_na must be an integer greater than 0.");
fj_na(val);
if (fj_elem() > fj_n())
fj_elem(fj_n());
initVectors();
setAreaQuantities();
} else
throw Exception("fj_na cannot be modified.");
return true;
}
#endif
case kwFjCen: {
if (!v.canConvert<DVect>())
throw Exception("fj_cen cannot be modified.");
DVect val(v.value<DVect>());
int el = fj_elem()-1;
setRelElemPos(c,el,val);
return false;
}
case kwFjTrack: {
if (!v.canConvert<bool>())
throw Exception("fj_track must be a boolean.");
bool b = v.toBool();
if (b) {
if (!orientProps_)
orientProps_ = NEWC(orientProps());
} else {
if (orientProps_) {
delete orientProps_;
orientProps_ = 0;
}
}
return true;
}
case kwUserArea: {
if (!v.canConvert<double>())
throw Exception("user_area must be a double.");
double val(v.toDouble());
if (val < 0.0)
throw Exception("Negative user_area not allowed.");
userArea_ = val;
propsFixed_ = false;
return true;
}
}
return false;
}
bool ContactModelFlatJoint::getPropertyReadOnly(uint i) const {
switch (i) {
case kwFjF:
case kwFjM:
case kwFjGap:
case kwFjRelBr:
case kwFjState:
case kwFjSlip:
case kwFjEgap:
case kwFjNstr:
case kwFjSstr:
case kwFjSs:
case kwFjRadius:
return true;
default:
break;
}
return false;
}
QString ContactModelFlatJoint::getMethodArguments(uint i) const {
switch (i) {
case kwBond:
case kwUnbond:
return "gap,element";
case KwDeformability:
return "emod,kratio";
case kwInitialize:
return "force,moment";
}
return QString();
}
bool ContactModelFlatJoint::setMethod(uint i,const QVector<QVariant> &vl,IContact *con) {
IContactMechanical *c(convert_getcast<IContactMechanical>(con));
bool bond(false);
switch (i) {
case kwBond:
bond = true;
case kwUnbond: {
int seg(0);
double mingap = -1.0 * limits<double>::max();
double maxgap = 0;
if (vl.size()==2) {
// The first is the gap
QVariant arg = vl.at(0);
if (!arg.isNull()) {
if (arg.canConvert<Double>())
maxgap = vl.at(0).toDouble();
else if (arg.canConvert<DVect2>()) {
DVect2 value = vl.at(0).value<DVect2>();
mingap = value.minComp();
maxgap = value.maxComp();
} else
throw Exception("Argument %1 not recognized in method %2 in contact model %3.",vl.at(0),bond ? "bond":"unbond",getName());
}
arg = vl.at(1);
if (!arg.isNull()) {
seg = vl.at(1).toUInt();
if (seg < 1)
throw Exception("Element indices start at 1 in method %1 in contact model %2.",bond ? "bond":"unbond",getName());
if (seg > fj_n())
throw Exception("Element index %1 exceeds segments number (%2) in method %3 in contact model %4.",seg,fj_n(),bond ? "bond":"unbond",getName());
}
}
double gap = c->getGap();
if (gap >= mingap && gap <= maxgap) {
if (!seg) {
for(int iSeg=1; iSeg<=fj_n(); ++iSeg)
bondElem(iSeg,bond);
} else {
bondElem(seg,bond);
}
// If have installed bonds and tracking is enabled then set the contact normal appropriately
if (orientProps_) {
orientProps_->orient1_ = Quat::identity();
orientProps_->orient2_ = Quat::identity();
orientProps_->origNormal_ = con->getNormal();
}
}
return true;
}
case KwDeformability:
{
double emod;
double krat;
if (vl.at(0).isNull())
throw Exception("Argument emod must be specified with method deformability in contact model %1.",getName());
emod = vl.at(0).toDouble();
if (emod<0.0)
throw Exception("Negative emod not allowed in contact model %1.",getName());
if (vl.at(1).isNull())
throw Exception("Argument kratio must be specified with method deformability in contact model %1.",getName());
krat = vl.at(1).toDouble();
if (krat<0.0)
throw Exception("Negative stiffness ratio not allowed in contact model %1.",getName());
double rsum(0.0);
if (c->getEnd1Curvature().y())
rsum += 1.0/c->getEnd1Curvature().y();
if (c->getEnd2Curvature().y())
rsum += 1.0/c->getEnd2Curvature().y();
if (userArea_) {
#ifdef THREED
rsum = std::sqrt(userArea_ / dPi);
#else
rsum = userArea_ / 2.0;
#endif
rsum += rsum;
}
fj_kn_ = emod / rsum;
fj_ks_ = (krat == 0.0) ? 0.0 : fj_kn_ / krat;
return true;
}
case KwUpdateGeom: {
// go through and update the total area (atot) and the
// radius rbar
double at = 0.0;
for (int i=1; i<=fj_n(); ++i)
at += a_[i-1];
atot(at);
//get the equivalent radius
#ifdef THREED
rbar(sqrt(at/dPi));
#else
rbar(at/2.0);
#endif
return true;
}
case kwArea: {
if (!userArea_) {
double rsq(1./std::max(c->getEnd1Curvature().y(),c->getEnd2Curvature().y()));
#ifdef THREED
userArea_ = rsq * rsq * dPi;
#else
userArea_ = rsq * 2.0;
#endif
}
return true;
}
case kwInitialize: {
DVect force;
DAVect moment;
if (vl.at(0).isNull())
throw Exception("Argument force must be specified with method initialize in contact model %1.",getName());
force = vl.at(0).value<DVect>();
if (vl.at(1).isNull())
throw Exception("Argument moment must be specified with method initialize in contact model %1.",getName());
#ifdef THREED
moment = vl.at(1).value<DVect>();
#else
moment.rz() = vl.at(1).toDouble();
#endif
// Set the gap accordingly to get the correct force
setForce(force,con);
fj_m_set(moment);
return true;
}
}
return false;
}
double ContactModelFlatJoint::getEnergy(uint i) const {
double ret(0.0);
if (!energies_)
return ret;
switch (i) {
case kwEStrain: return energies_->estrain_;
case kwESlip: return energies_->eslip_;
}
assert(0);
return ret;
}
bool ContactModelFlatJoint::getEnergyAccumulate(uint i) const {
switch (i) {
case kwEStrain: return false;
case kwESlip: return true;
}
assert(0);
return false;
}
void ContactModelFlatJoint::setEnergy(uint i,const double &d) {
if (!energies_) return;
switch (i) {
case kwEStrain: energies_->estrain_ = d; return;
case kwESlip: energies_->eslip_ = d; return;
}
assert(0);
return;
}
bool ContactModelFlatJoint::validate(ContactModelMechanicalState *state,const double &) {
assert(state);
const IContactMechanical *c = state->getMechanicalContact();
assert(c);
// This presumes that one of the ends has a non-zero curvature
rmin(1.0/std::max(c->getEnd1Curvature().y(),c->getEnd2Curvature().y()));
if (userArea_) {
#ifdef THREED
rmin(std::sqrt(userArea_ / dPi));
#else
rmin(userArea_ / 2.0);
#endif
}
if (!propsFixed()) {
setAreaQuantities();
mType(getmType());
}
// Initialize the tracking if not initialized
if (orientProps_ && orientProps_->origNormal_ == DVect(0.0)) {
orientProps_->origNormal_ = c->getContact()->getNormal();
orientProps_->orient1_ = Quat::identity();
orientProps_->orient2_ = Quat::identity();
}
if (state->trackEnergy_)
activateEnergy();
updateEffectiveStiffness(state);
return checkActivity(state->gap_);
}
void ContactModelFlatJoint::updateEffectiveStiffness(ContactModelMechanicalState *) {
DVect2 ret(fj_kn_,fj_ks_);
ret *= atot();
effectiveTranslationalStiffness(ret);
#ifdef TWOD
effectiveRotationalStiffness(DAVect(fj_kn() * (2.0/3.0)*rbar()*rbar()*rbar()));
#else
double piR4 = dPi * rbar() * rbar() * rbar() * rbar();
double t = fj_kn() * 0.25 * piR4;
effectiveRotationalStiffness(DAVect(fj_ks() * 0.50 * piR4,t,t));
#endif
}
bool ContactModelFlatJoint::forceDisplacementLaw(ContactModelMechanicalState *state,const double ×tep) {
if (!propsFixed())
propsFixed(true);
timestep;
assert(state);
if (state->activated()) {
if (cmEvents_[fActivated] >= 0) {
FArray<QVariant,2> arg;
QVariant v;
IContact * c = const_cast<IContact*>(state->getContact());
TPtr<IThing> t(c->getIThing());
v.setValue(t);
arg.push_back(v);
IFishCallList *fi = const_cast<IFishCallList*>(state->getProgram()->findInterface<IFishCallList>());
fi->setCMFishCallArguments(c,arg,cmEvents_[fActivated]);
}
}
// Update the orientations
if (orientProps_) {
orientProps_->orient1_.increment(state->getMechanicalContact()->getEnd1Mechanical()->getAngVelocity()*timestep);
orientProps_->orient2_.increment(state->getMechanicalContact()->getEnd2Mechanical()->getAngVelocity()*timestep);
}
#ifdef TWOD
// Translational increment in local coordinates
DVect del_U = state->relativeTranslationalIncrement_;
double del_theta = state->relativeAngularIncrement_.z();
gap(gap() + del_U); // in normal and shear direction in 2D
theta(theta() + del_theta);
double dSig, dTau;
double delX = 2*rbar() / fj_n();
double rbar2 = rbar() / fj_n();
DVect dFSum(0.0);
double dMSum = 0.0;
if (state->trackEnergy_) {
assert(energies_);
energies_->estrain_ = 0.0;
}
bool oneBonded = false;
for(int i=0; i<fj_n(); ++i) {
double g0 = gap((i )*delX);
double g1 = gap((i+1)*delX);
double gMid = 0.5*(g0 + g1);
if (bmode_[i] != 3 && gMid > 0) {
egap_[i] = gMid;
f_[i] = DVect(0.0);
continue;
}
dSig = computeSig(g0,g1,rbar2,a_[i],(bmode_[i]==3));
bool tensileBreak = false;
if (bmode_[i]==3) {
if (state->canFail_ && dSig >= fj_ten()) {
breakBond(i+1,1,state);
dSig = dTau = 0.0;
tensileBreak = true;
}
}
if (!tensileBreak) {
dTau = f_[i].y() / a_[i];
double dUse = delUse(egap_[i],gMid,(bmode_[i]==3),del_U.y());
double dtauP = dTau - fj_ks()*dUse;
double dtauPabs = abs(dtauP);
if (bmode_[i]==3) { // bonded
if (dtauPabs < tauC(dSig,true))
dTau = dtauP;
else {
if (state->canFail_) {
breakBond(i+1,2,state);
dSig = dTau = 0.0;
}
}
} else { // unbonded
double dtauC = tauC(dSig,false);
if (dtauPabs <= dtauC) {
dTau = dtauP;
slipChange(i+1,false,state);
} else {
dTau = dtauP * ( dtauC / dtauPabs );
slipChange(i+1,true,state);
if (state->trackEnergy_) { energies_->eslip_ += dtauC*a_[i]*abs(dUse);}
}
}
}
oneBonded = true;
egap_[i] = gMid;
f_[i] = DVect(-dSig*a_[i],dTau*a_[i]);
dFSum += f_[i];
double m = computeM(g0,g1,rbar2,(bmode_[i]==3)) + fj_m_set().z()/fj_n();
dMSum += m - rBarl_[i]*f_[i].x();
if (state->trackEnergy_) {
if (fj_kn_) {
double ie = 2.0*rBarl_[i]*rBarl_[i]*rBarl_[i] / 3.0;
energies_->estrain_ += 0.5*(dSig*dSig*a_[i] + m*m/ie) / fj_kn_;
}
if (fj_ks_) {
energies_->estrain_ += 0.5 * dTau*dTau*a_[i] / fj_ks_;
}
}
}
//
fj_f(dFSum);
fj_m(DAVect(dMSum));
if (!oneBonded)
fj_m_set(DAVect(0.0));
#else
CAxes localSys = state->getMechanicalContact()->getContact()->getLocalSystem();
DVect trans = state->relativeTranslationalIncrement_; // translation increment in local coordinates
DAVect ang = state->relativeAngularIncrement_; // rotational increment in local coordinates
DVect shear(0.0,trans.y(),trans.z());
DVect del_Us = localSys.toGlobal(shear); // In global coordinates
// What is the twist in global coordinates?
DVect del_Theta_t = localSys.e1()*ang.x();
theta_ += ang.y();
thetaM_ += ang.z();
gap(gap() + trans);
if (state->trackEnergy_) {
assert(energies_);
energies_->estrain_ = 0.0;
}
DVect force(0.0);
DAVect mom(0.0);
bool oneBonded = false;
for (int e=1,i=0; e<=fj_n(); ++e, ++i) {
double gBar1 = gap( rBarl_[i].x(),rBarl_[i].y());
if (!Bonded(e) && gBar1 > 0) {
egap_[i] = gBar1;
f_[i] = DVect(0.0);
continue;
}
DVect r = localSys.e2()*rBarl_[i].x() + localSys.e3()*rBarl_[i].y(); // location of element point
double sigBar_e = sigBar(e);
f_[i].rx() = -sigBar_e * a_[i]; // Step 1...
if (Bonded(e) && (sigBar_e >= fj_ten())) { // break bond in tension
if (state->canFail_) {
breakBond(e,1,state);
f_[i] = DVect(0.0);
}
} else {
DVect del_us = del_Us + (del_Theta_t & r); // In global - has the twist in there
double del_usl = delUse(egap_[i],gBar1,Bonded(e),(del_us | localSys.e2()));
double del_usm = delUse(egap_[i],gBar1,Bonded(e),(del_us | localSys.e3()));
double Fs_lP = f_[i].y() - fj_ks() * a_[i] * del_usl;
double Fs_mP = f_[i].z() - fj_ks() * a_[i] * del_usm;
double FsPMag = sqrt( Fs_lP*Fs_lP + Fs_mP*Fs_mP );
double tauBarP = FsPMag / a_[i];
if ( !Bonded(e) ) {
double tau_c = sigBar_e < 0.0 ? -fj_fric()*sigBar_e : 0.0;
if ( tauBarP <= tau_c ) {
f_[i].ry() = Fs_lP;
f_[i].rz() = Fs_mP;
slipChange(e,false,state);
} else { // enforce sliding
double sFac = tau_c * a_[i] / FsPMag;
f_[i].ry() = Fs_lP * sFac;
f_[i].rz() = Fs_mP * sFac;
slipChange(e,true,state);
if (state->trackEnergy_) { energies_->eslip_ += tau_c*a_[i]*sqrt(del_usl*del_usl+del_usm*del_usm);}
}
} else { // Bonded(e)
double tau_c = fj_coh() - sigBar_e * tan(dDegrad*fj_fa());
if ( tauBarP <= tau_c ) {
f_[i].ry() = Fs_lP;
f_[i].rz() = Fs_mP;
} else { // break bond in shear
if (state->canFail_) {
breakBond(e,2,state);
f_[i] = DVect(0.0);
}
}
}
}
oneBonded = true;
force += f_[i];
mom += localSys.toLocal(r) & f_[i] + fj_m_set()/fj_n();
egap_[i] = gBar1;
if (state->trackEnergy_) {
energies_->estrain_ += computeStrainEnergy(e);
}
}
fj_f(force);
fj_m(mom);
if (!oneBonded)
fj_m_set(DAVect(0.0));
#endif
assert(fj_f_ == fj_f_);
return checkActivity(0.0);
}
void ContactModelFlatJoint::setAreaQuantities() {
rbar(fj_rmul() * rmin());
#ifdef TWOD
atot(2.0 * rbar());
double v = atot()/fj_n();
for (int i=1; i<=fj_n(); ++i) {
a_[i-1] = v;
rBarl_[i-1] = rbar() * (double(-2*i + 1 + fj_n()) / fj_n());
}
#else
atot(dPi * rbar() * rbar());
double del_r = rbar() / fj_nr();
double del_al = 2.0*dPi / fj_na();
double fac = 2.0/3.0;
for (int i=0; i < fj_n(); ++i) {
double dVal = i / fj_na();
int I = (int)floor( dVal );
int J = i - I*fj_na();
double r1 = I * del_r;
double r2 = (I + 1) * del_r;
double al1 = J * del_al;
double al2 = (J + 1) * del_al;
a_[i] = 0.5 * (al2 - al1) * (r2*r2 - r1*r1);
rBarl_[i] = DVect2(((sin(al2) - sin(al1)) / (al2 - al1))*((r2*r2*r2 - r1*r1*r1)/(r2*r2 - r1*r1)),
((cos(al1) - cos(al2)) / (al2 - al1))*((r2*r2*r2 - r1*r1*r1)/(r2*r2 - r1*r1)))*fac;
}
#endif
updateEffectiveStiffness(0);
}
DVect ContactModelFlatJoint::getRelElemPos(const IContact* c,int i) const {
DVect ret(0.0);
if (c) {
ret = c->getPosition();
CAxes localSys = c->getLocalSystem();
#ifdef TWOD
ret += localSys.e2()*rBarl_[i];
#else
ret += localSys.e2()*rBarl_[i].x() + localSys.e3()*rBarl_[i].y();
#endif
}
return ret;
}
void ContactModelFlatJoint::setRelElemPos(const IContact* c,int i,const DVect &pos) {
// pos is a position in space in global coordinates
propsFixed(true);
if (c) {
// project onto the plane
DVect cp = c->getPosition();
DVect norm = c->getNormal();
double sd = norm|(cp - pos);
// np is the point on the plane
DVect np = pos+norm*sd;
np = np-cp;
CAxes localSys = c->getLocalSystem();
np = localSys.toLocal(np);
#ifdef TWOD
rBarl_[i] = np.y();
#else
rBarl_[i] = DVect2(np.y(),np.z());
#endif
}
}
int ContactModelFlatJoint::getmType() const {
if (propsFixed()) return mType();
//
if (fj_gap0() > 0.0) return 2;
//
// If we get to here, then G == 0.0.
bool AllBonded = true;
bool AllSlit = true;
for(int i=0; i<fj_n(); ++i) {
if (bmode_[i] != 3) AllBonded = false;
else AllSlit = false;
}
if (AllBonded) return 1;
if (AllSlit) return 3;
//
return 4;
}
void ContactModelFlatJoint::bondElem(int iSeg,bool bBond ) {
if (bBond) {
if (fj_gap0() == 0.0) {
bmode_[iSeg-1] = 3;
} else
bmode_[iSeg-1] = 0;
} else
bmode_[iSeg-1] = 0;
}
void ContactModelFlatJoint::breakBond(int iSeg,int fmode,ContactModelMechanicalState *state) {
bmode_[iSeg-1] = fmode;
if (cmEvents_[fBondBreak] >= 0) {
FArray<QVariant,3> arg;
QVariant p1;
IContact * c = const_cast<IContact*>(state->getContact());
TPtr<IThing> t(c->getIThing());
p1.setValue(t);
arg.push_back(p1);
p1.setValue(iSeg);
arg.push_back(p1);
p1.setValue(fmode);
arg.push_back(p1);
p1.setValue(computeStrainEnergy(iSeg));
arg.push_back(p1);
IFishCallList *fi = const_cast<IFishCallList*>(state->getProgram()->findInterface<IFishCallList>());
fi->setCMFishCallArguments(c,arg,cmEvents_[fBondBreak]);
}
if (!isBonded() && cmEvents_[fBroken] >= 0) {
FArray<QVariant,2> arg;
QVariant p1;
IContact * c = const_cast<IContact*>(state->getContact());
TPtr<IThing> t(c->getIThing());
p1.setValue(t);
arg.push_back(p1);
IFishCallList *fi = const_cast<IFishCallList*>(state->getProgram()->findInterface<IFishCallList>());
fi->setCMFishCallArguments(c,arg,cmEvents_[fBroken]);
}
}
void ContactModelFlatJoint::slipChange(int iSeg,bool smode,ContactModelMechanicalState *state) {
bool emitEvent = false;
if (smode) {
if (!smode_[iSeg-1]) {
emitEvent = true;
smode_[iSeg-1] = smode;
}
} else {
if (smode_[iSeg-1]) {
emitEvent = true;
smode_[iSeg-1] = smode;
}
}
if (emitEvent && cmEvents_[fSlipChange] >= 0) {
FArray<QVariant,3> arg;
QVariant p1;
IContact * c = const_cast<IContact*>(state->getContact());
TPtr<IThing> t(c->getIThing());
p1.setValue(t);
arg.push_back(p1);
p1.setValue(iSeg);
arg.push_back(p1);
p1.setValue(smode);
arg.push_back(p1);
IFishCallList *fi = const_cast<IFishCallList*>(state->getProgram()->findInterface<IFishCallList>());
fi->setCMFishCallArguments(c,arg,cmEvents_[fSlipChange]);
}
}
double ContactModelFlatJoint::tauC(const double &dSig,bool bBonded) const {
if (bBonded) return (fj_coh() + (tan(dDegrad*fj_fa()) * (-dSig)) );
else return (dSig < 0.0 ? -fj_fric() * dSig : 0.0 );
}
#ifdef THREED
double ContactModelFlatJoint::xi(int comp) const {
if (comp == 1) return abs(theta_) <= 1e-12 ? 0.0 : theta_/thbMag();
else return abs(thetaM_) <= 1e-12 ? 0.0 : thetaM_/thbMag();
}
#endif
void ContactModelFlatJoint::initVectors() {
a_.resize(fj_n());
rBarl_.resize(fj_n());
bmode_.resize(fj_n());
smode_.resize(fj_n());
egap_.resize(fj_n());
f_.resize(fj_n());
for (int i=0; i<fj_n(); ++i) {
a_[i] = egap_[i] = 0.0;
#ifdef THREED
rBarl_[i] = DVect2(0.0);
#else
rBarl_[i] = 0.0;
#endif
f_[i] = DVect(0.0);
bmode_[i] = 0;
smode_[i] = false;
}
}
#ifdef TWOD
double ContactModelFlatJoint::gap(const double &x) const {
return gap().x() + theta()*(x - rbar());
}
#else
double ContactModelFlatJoint::gap(const double &r_l,const double &r_m ) const {
return gap().x() + ( r_m*xi(1) - r_l*xi(2) ) * thbMag();
}
double ContactModelFlatJoint::sigBar(int e) const {
if (!Bonded(e)&& gap(rBarl_[e-1].x(),rBarl_[e-1].y()) >= 0.0)
return 0.0;
else
return fj_kn() * gap(rBarl_[e-1].x(),rBarl_[e-1].y());
}
double ContactModelFlatJoint::tauBar(int e) const {
return a_[e-1] <= 1e-12 ?
0.0 : sqrt(f_[e-1].y()*f_[e-1].y() + f_[e-1].z()*f_[e-1].z())/a_[e-1] ;
}
#endif
double ContactModelFlatJoint::computeStrainEnergy(int e) const {
double ret(0.0);
int i = e - 1;
#ifdef TWOD
double delX = 2 * rbar() / fj_n();
double g0 = gap((i)*delX);
double g1 = gap((i + 1)*delX);
double rbar2 = rbar() / fj_n();
double dSig = computeSig(g0, g1, rbar2, a_[i], (bmode_[i] == 3));
double m = computeM(g0, g1, rbar2, (bmode_[i] == 3));
double dTau = f_[i].y() / a_[i]; // only valid before failure
if (fj_kn_) {
double ie = 2.0*rBarl_[i] * rBarl_[i] * rBarl_[i] / 3.0;
ret += 0.5*(dSig*dSig*a_[i] + m * m / ie) / fj_kn_;
}
if (fj_ks_) {
ret += 0.5 * dTau*dTau*a_[i] / fj_ks_;
}
#else
if (fj_kn_) {
ret += 0.5*(sigBar(e)*sigBar(e)*a_[i]) / fj_kn_;
}
if (fj_ks_) {
ret += 0.5 * (f_[i].y()*f_[i].y() + f_[i].z()*f_[i].z()) / (fj_ks_*a_[i]);
}
#endif
return ret;
}
double ContactModelFlatJoint::computeSig(const double &g0,const double &g1,const double &rbar,
const double &dA,bool bBonded ) const {
double gTerm;
switch (getCase(g0, g1)) {
case 1:
if (bBonded) gTerm = (g0 + g1);
else if (g0 < 0.0) gTerm = -( g0*g0 / (g1 - g0) );
else gTerm = ( g1*g1 / (g1 - g0) );
break;
case 2:
if (bBonded) gTerm = (g0 + g1);
else gTerm = 0.0;
break;
case 3:
gTerm = (g0 + g1);
break;
}
return (fj_kn() * gTerm * rbar) / dA;
}
double ContactModelFlatJoint::computeM(const double &g0,const double &g1,const double &rbar,
bool bBonded) const {
double gTerm;
switch (getCase(g0,g1)) {
case 1:
if (bBonded) gTerm = -((g1 - g0) / 3.0);
else if (g0 < 0.0) gTerm = g0*g0*(g0 - 3.0*g1) / (3.0*(g1-g0)*(g1-g0));
else gTerm = -(((g1-g0)*(g1-g0)*(g1-g0) + g0*g0*(g0 - 3.0*g1))
/ (3.0*(g1-g0)*(g1-g0)));
break;
case 2:
if (bBonded) gTerm = -((g1 - g0) / 3.0);
else gTerm = 0.0;
break;
case 3:
gTerm = -((g1 - g0) / 3.0);
break;
}
return fj_kn() * gTerm * rbar*rbar;
}
int ContactModelFlatJoint::getCase(const double &g0,const double &g1) const {
if (g0 * g1 < 0.0) // Case 1: gap changes sign
return 1;
else if (g0 >= 0.0 && g1 >= 0.0) // Case 2: gap remains positive or zero
return 2;
else // Case 3: gap remains negative
return 3;
}
double ContactModelFlatJoint::delUse(const double &gapStart,const double &gapEnd,bool bBonded,
const double &delUs) const {
if ( bBonded ) return delUs;
if ( gapStart <= 0.0 ) {
if ( gapEnd <= 0.0 )
return delUs;
else { // gapEnd > 0.0
double xi = -gapStart / (gapEnd - gapStart);
return delUs * xi;
}
} else { // gapStart > 0.0
if ( gapEnd >= 0.0 )
return 0.0;
else { // gapEnd < 0.0
double xi = -gapStart / (gapEnd - gapStart);
return delUs * (1.0 - xi);
}
}
}
bool ContactModelFlatJoint::checkActivity(const double &inGap) {
// If any subcontact is bonded return true
FOR(it,bmode_) if ((*it) == 3)
return true;
// If the normal gap is less than 2*rbar return true
if (gap().x() < 2.0*rbar())
return true;
// check to see if there is overlap (based on the initial gap) to reset activity if the contact has been previously deactivated
if (inGap < 0) {
// reset the relative rotation
theta(0.0);
#ifdef THREED
thetaM(0.0);
#endif
// set the gap to be the current gap, removing the shear displacement
DVect inp(inGap,0.0);
gap(inp);
return true;
}
return false;
}
void ContactModelFlatJoint::setForce(const DVect &v,IContact *) {
fj_f_ = v;
DVect df = v / f_.size();
for (int i=0; i<f_.size(); ++i)
f_[i] = df;
// Set gap consistent with normal force
double at = userArea_;
if (!userArea_) {
for (int i = 1; i <= fj_n(); ++i)
at += a_[i - 1];
}
gap_.rx() = -1.0 * v.x() / (fj_kn_ * at);
}
void ContactModelFlatJoint::getSphereList(const IContact *con,std::vector<DVect> *pos,std::vector<double> *rad,std::vector<double> *val) {
assert(pos);
assert(rad);
assert(val);
if (!orientProps_)
return;
// find minimal radii for end1
double br = convert_getcast<IContactMechanical>(con)->getEnd1Curvature().y();
if (br) {
const IPiece *p = con->getEnd1();
FArray<const IContact*> arr;
p->getContactList(&arr);
double maxgap = 0.0;
FOR(ic,arr) {
const IContactMechanical *mc = convert_getcast<IContactMechanical>(*ic);
const IContactModelMechanical *mcm = mc->getModelMechanical();
if (mcm->getContactModel()->getIndex() == ContactModelFlatJoint::getIndex()) {
const ContactModelFlatJoint *in = dynamic_cast<const ContactModelFlatJoint*>(mcm);
maxgap = std::max<double>(maxgap,in->gap().x()- mc->getGap());
}
}
br = 1.0 / br - 0.5*maxgap;
const IContactMechanical *mc = convert_getcast<IContactMechanical>(con);
pos->push_back(convert_getcast<IPieceMechanical>(mc->getEnd1())->getPosition());
rad->push_back(br);
val->push_back(mc->getEnd1()->getIThing()->getID());
}
// Give the end2 sphere - bummer
br = convert_getcast<IContactMechanical>(con)->getEnd2Curvature().y();
if (br) {
const IPiece *p = con->getEnd2();
FArray<const IContact*> arr;
p->getContactList(&arr);
double maxgap = 0.0;
FOR(ic,arr) {
const IContactMechanical *mc = convert_getcast<IContactMechanical>(*ic);
const IContactModelMechanical *mcm = mc->getModelMechanical();
if (mcm->getContactModel()->getIndex() == ContactModelFlatJoint::getIndex()) {
const ContactModelFlatJoint *in = dynamic_cast<const ContactModelFlatJoint*>(mcm);
maxgap = std::max<double>(maxgap,in->gap().x()- mc->getGap());
}
}
br = 1.0 / br - 0.5*maxgap;
const IContactMechanical *mc = convert_getcast<IContactMechanical>(con);
pos->push_back(convert_getcast<IPieceMechanical>(mc->getEnd2())->getPosition());
rad->push_back(br);
val->push_back(mc->getEnd2()->getIThing()->getID());
}
}
#ifdef THREED
void ContactModelFlatJoint::getDiskList(const IContact *con,std::vector<DVect> *pos,std::vector<DVect> *normal,std::vector<double> *radius,std::vector<double> *val) {
assert(pos);
assert(normal);
assert(radius);
assert(val);
if (!orientProps_)
return;
// plot the contact plane right in the middle of the 2 normals
double rad = fj_rmul()*rmin();
DVect axis1 = orientProps_->orient1_.rotate(orientProps_->origNormal_);
DVect axis2 = orientProps_->orient2_.rotate(orientProps_->origNormal_);
DVect norm = ((axis1.unit()+axis2.unit())*0.5).unit();
pos->push_back(con->getPosition());
normal->push_back(norm);
radius->push_back(rad);
const IContactMechanical *mc = convert_getcast<IContactMechanical>(con);
val->push_back(mc->getLocalForce().mag());
}
#endif
void ContactModelFlatJoint::getCylinderList(const IContact *con,std::vector<DVect> *bot,std::vector<DVect> *top,std::vector<double> *radlow,std::vector<double> *radhi,std::vector<double> *val) {
assert(bot);
assert(top);
assert(radlow);
assert(radhi);
assert(val);
if (!orientProps_)
return;
const IContactMechanical *mc = convert_getcast<IContactMechanical>(con);
double br = mc->getEnd1Curvature().y(), br2 = mc->getEnd2Curvature().y();
if (userArea_) {
#ifdef THREED
br = std::sqrt(userArea_ / dPi);
#else
br = userArea_ / 2.0;
#endif
br = 1. / br;
br2 = br;
}
double cgap = mc->getGap();
if (br > 0 && br2 > 0) {
br = 1.0 / br;
br2 = 1.0 / br2;
double rad = fj_rmul()*rmin();
DVect bp = convert_getcast<IPieceMechanical>(mc->getEnd1())->getPosition();
DVect axis = orientProps_->orient1_.rotate(orientProps_->origNormal_);
bot->push_back(axis.unit()*(br-0.5*(gap().x()- cgap))+bp);
top->push_back(bp);
radlow->push_back(rad);
radhi->push_back(0.0);
val->push_back(mc->getEnd1()->getIThing()->getID());
bp = convert_getcast<IPieceMechanical>(mc->getEnd2())->getPosition();
axis = orientProps_->orient2_.rotate(orientProps_->origNormal_);
bot->push_back(axis.unit()*(br2-0.5*(gap().x()-cgap))*(-1.0)+bp);
top->push_back(bp);
radlow->push_back(rad);
radhi->push_back(0.0);
val->push_back(mc->getEnd2()->getIThing()->getID());
}
}
DVect ContactModelFlatJoint::getForce(const IContactMechanical *) const {
DVect ret(fj_f_);
return ret;
}
DAVect ContactModelFlatJoint::getMomentOn1(const IContactMechanical *c) const {
DVect force = getForce(c);
DAVect ret(fj_m_);
c->updateResultingTorqueOn1Local(force,&ret);
return ret;
}
DAVect ContactModelFlatJoint::getMomentOn2(const IContactMechanical *c) const {
DVect force = getForce(c);
DAVect ret(fj_m_);
c->updateResultingTorqueOn2Local(force,&ret);
return ret;
}
} // namespace itascaxd
// EoF
|
Was this helpful? ... | PFC 6.0 © 2019, Itasca | Updated: Nov 19, 2021 |