Linear Contact Model Implementation
See this page for the documentation of this contact model.
contactmodellinear.h
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 | #pragma once
// contactmodellinear.h
#include "contactmodel/src/contactmodelmechanical.h"
#ifdef LINEAR_LIB
# define LINEAR_EXPORT EXPORT_TAG
#elif defined(NO_MODEL_IMPORT)
# define LINEAR_EXPORT
#else
# define LINEAR_EXPORT IMPORT_TAG
#endif
namespace cmodelsxd {
using namespace itasca;
class ContactModelLinear : public ContactModelMechanical {
public:
// Constructor: Set default values for contact model properties.
LINEAR_EXPORT ContactModelLinear();
// Destructor, called when contact is deleted: free allocated memory, etc.
LINEAR_EXPORT virtual ~ContactModelLinear();
// Contact model name (used as keyword for commands and FISH).
virtual QString getName() const { return "linear"; }
// The index provides a quick way to determine the type of contact model.
// Each type of contact model in PFC must have a unique index; this is assigned
// by PFC when the contact model is loaded. This index should be set to -1
virtual void setIndex(int i) { index_=i;}
virtual int getIndex() const {return index_;}
// Contact model version number (e.g., MyModel05_1). The version number can be
// accessed during the save-restore operation (within the archive method,
// testing {stream.getRestoreVersion() == getMinorVersion()} to allow for
// future modifications to the contact model data structure.
virtual uint getMinorVersion() const;
// Copy the state information to a newly created contact model.
// Provide access to state information, for use by copy method.
virtual void copy(const ContactModel *c) override;
// Provide save-restore capability for the state information.
virtual void archive(ArchiveStream &);
// Enumerator for the properties.
enum PropertyKeys {
kwKn=1
, kwKs
, kwFric
, kwLinF
, kwLinS
, kwLinMode
, kwRGap
, kwEmod
, kwKRatio
, kwDpNRatio
, kwDpSRatio
, kwDpMode
, kwDpF
, kwUserArea
};
// Contact model property names in a comma separated list. The order corresponds with
// the order of the PropertyKeys enumerator above. One can visualize any of these
// properties in PFC automatically.
virtual QString getProperties() const {
return "kn"
",ks"
",fric"
",lin_force"
",lin_slip"
",lin_mode"
",rgap"
",emod"
",kratio"
",dp_nratio"
",dp_sratio"
",dp_mode"
",dp_force"
",user_area";
}
// Enumerator for the energies.
enum EnergyKeys {
kwEStrain=1
, kwESlip
, kwEDashpot
};
// Contact model energy names in a comma separated list. The order corresponds with
// the order of the EnergyKeys enumerator above.
virtual QString getEnergies() const {
return "energy-strain"
",energy-slip"
",energy-dashpot";
}
// Returns the value of the energy (base 1 - getEnergy(1) returns the estrain energy).
virtual double getEnergy(uint i) const;
// Returns whether or not each energy is accumulated (base 1 - getEnergyAccumulate(1)
// returns wther or not the estrain energy is accumulated which is false).
virtual bool getEnergyAccumulate(uint i) const;
// Set an energy value (base 1 - setEnergy(1) sets the estrain energy).
virtual void setEnergy(uint i,const double &d); // Base 1
// Activate the energy. This is only called if the energy tracking is enabled.
virtual void activateEnergy() { if (energies_) return; energies_ = NEWC(Energies());}
// Returns whether or not the energy tracking has been enabled for this contact.
virtual bool getEnergyActivated() const {return (energies_ != 0);}
// Enumerator for contact model related FISH callback events.
enum FishCallEvents {
fActivated=0
,fSlipChange
};
// Contact model FISH callback event names in a comma separated list. The order corresponds with
// the order of the FishCallEvents enumerator above.
virtual QString getFishCallEvents() const {
return
"contact_activated"
",slip_change";
}
// Return the specified contact model property.
virtual QVariant getProperty(uint i,const IContact *) const;
// The return value denotes whether or not the property corresponds to the global
// or local coordinate system (TRUE: global system, FALSE: local system). The
// local system is the contact-plane system (nst) defined as follows.
// If a vector V is expressed in the local system as (Vn, Vs, Vt), then V is
// expressed in the global system as {Vn*nc + Vs*sc + Vt*tc} where where nc, sc
// and tc are unit vectors in directions of the nst axes.
// This is used when rendering contact model properties that are vectors.
virtual bool getPropertyGlobal(uint i) const;
// Set the specified contact model property, ensuring that it is of the correct type
// and within the correct range --- if not, then throw an exception.
// The return value denotes whether or not the update has affected the timestep
// computation (by having modified the translational or rotational tangent stiffnesses).
// If true is returned, then the timestep will be recomputed.
virtual bool setProperty(uint i,const QVariant &v,IContact *);
// The return value denotes whether or not the property is read-only
// (TRUE: read-only, FALSE: read-write).
virtual bool getPropertyReadOnly(uint i) const;
// The return value denotes whether or not the property is inheritable
// (TRUE: inheritable, FALSE: not inheritable). Inheritance is provided by
// the endPropertyUpdated method.
virtual bool supportsInheritance(uint i) const;
// Return whether or not inheritance is enabled for the specified property.
virtual bool getInheritance(uint i) const { assert(i<32); quint32 mask = to<quint32>(1 << i); return (inheritanceField_ & mask) ? true : false; }
// Set the inheritance flag for the specified property.
virtual void setInheritance(uint i,bool b) { assert(i<32); quint32 mask = to<quint32>(1 << i); if (b) inheritanceField_ |= mask; else inheritanceField_ &= ~mask; }
// Enumerator for contact model methods.
enum MethodKeys { kwDeformability=1, kwArea};
// Contact model methoid names in a comma separated list. The order corresponds with
// the order of the MethodKeys enumerator above.
virtual QString getMethods() const { return "deformability,area";}
// Return a comma seprated list of the contact model method arguments (base 1).
virtual QString getMethodArguments(uint i) const;
// Set contact model method arguments (base 1).
// The return value denotes whether or not the update has affected the timestep
// computation (by having modified the translational or rotational tangent stiffnesses).
// If true is returned, then the timestep will be recomputed.
virtual bool setMethod(uint i,const QVector<QVariant> &vl,IContact *con=0);
// Prepare for entry into ForceDispLaw. The validate function is called when:
// (1) the contact is created, (2) a property of the contact that returns a true via
// the setProperty method has been modified and (3) when a set of cycles is executed
// via the {cycle N} command.
// Return value indicates contact activity (TRUE: active, FALSE: inactive).
virtual bool validate(ContactModelMechanicalState *state,const double ×tep);
// The endPropertyUpdated method is called whenever a surface property (with a name
// that matches an inheritable contact model property name) of one of the contacting
// pieces is modified. This allows the contact model to update its associated
// properties. The return value denotes whether or not the update has affected
// the time step computation (by having modified the translational or rotational
// tangent stiffnesses). If true is returned, then the time step will be recomputed.
virtual bool endPropertyUpdated(const QString &name,const IContactMechanical *c);
// The forceDisplacementLaw function is called during each cycle. Given the relative
// motion of the two contacting pieces (via
// state->relativeTranslationalIncrement_ (Ddn, Ddss, Ddst)
// state->relativeAngularIncrement_ (Dtt, Dtbs, Dtbt)
// Ddn : relative normal-displacement increment, Ddn > 0 is opening
// Ddss : relative shear-displacement increment (s-axis component)
// Ddst : relative shear-displacement increment (t-axis component)
// Dtt : relative twist-rotation increment
// Dtbs : relative bend-rotation increment (s-axis component)
// Dtbt : relative bend-rotation increment (t-axis component)
// The relative displacement and rotation increments:
// Dd = Ddn*nc + Ddss*sc + Ddst*tc
// Dt = Dtt*nc + Dtbs*sc + Dtbt*tc
// where nc, sc and tc are unit vectors in direc. of the nst axes, respectively.
// [see {Table 1: Contact State Variables} in PFC Model Components:
// Contacts and Contact Models: Contact Resolution]
// ) and the contact properties, this function must update the contact force and
// moment.
// The force_ is acting on piece 2, and is expressed in the local coordinate system
// (defined in getPropertyGlobal) such that the first component positive denotes
// compression. If we define the moment acting on piece 2 by Mc, and Mc is expressed
// in the local coordinate system (defined in getPropertyGlobal), then we must use the getMechanicalContact()->updateResultingTorquesLocal(...) method to
// get the total moment.
// The return value indicates the contact activity status (TRUE: active, FALSE:
// inactive) during the next cycle.
// Additional information:
// * If state->activated() is true, then the contact has just become active (it was
// inactive during the previous time step).
// * Fully elastic behavior is enforced during the SOLVE ELASTIC command by having
// the forceDispLaw handle the case of {state->canFail_ == true}.
virtual bool forceDisplacementLaw(ContactModelMechanicalState *state,const double ×tep);
// Perform thermal coupling
virtual bool thermalCoupling(ContactModelMechanicalState*, ContactModelThermalState*, IContactThermal*, const double&);
// The getEffectiveXStiffness functions return the translational and rotational
// tangent stiffnesses used to compute a stable time step. When a contact is sliding,
// the translational tangent shear stiffness is zero (but this stiffness reduction
// is typically ignored when computing a stable time step). If the contact model
// includes a dashpot, then the translational stiffnesses must be increased (see
// Potyondy (2009)).
// [Potyondy, D. 'Stiffness Matrix at a Contact Between Two Clumps,' Itasca
// Consulting Group, Inc., Minneapolis, MN, Technical Memorandum ICG6863-L,
// December 7, 2009.]
virtual DVect2 getEffectiveTranslationalStiffness() const { return effectiveTranslationalStiffness_; }
virtual DAVect getEffectiveRotationalStiffness() const { return DAVect(0.0);}
// Return a new instance of the contact model. This is used in the CMAT
// when a new contact is created.
virtual ContactModelLinear *clone() const override { return NEWC(ContactModelLinear()); }
// The getActivityDistance function is called by the contact-resolution logic when
// the CMAT is modified. Return value is the activity distance used by the
// checkActivity function.
virtual double getActivityDistance() const {return rgap_;}
// The isOKToDelete function is called by the contact-resolution logic when...
// Return value indicates whether or not the contact may be deleted.
// If TRUE, then the contact may be deleted when it is inactive.
// If FALSE, then the contact may not be deleted (under any condition).
virtual bool isOKToDelete() const { return !isBonded(); }
// Zero the forces and moments stored in the contact model. This function is called
// when the contact becomes inactive.
virtual void resetForcesAndMoments() { lin_F(DVect(0.0)); dp_F(DVect(0.0)); if (energies_) energies_->estrain_ = 0.0;}
virtual void setForce(const DVect &v,IContact *c);
virtual void setArea(const double &d) { userArea_ = d; }
virtual double getArea() const { return userArea_; }
// The checkActivity function is called by the contact-resolution logic when...
// Return value indicates contact activity (TRUE: active, FALSE: inactive).
// A contact with the linear model is active if the contact gap is
// less than or equal to zero.
virtual bool checkActivity(const double &gap) { return gap <= rgap_; }
// Returns the sliding state (FALSE is returned if not implemented).
virtual bool isSliding() const { return lin_S_; }
// Returns the bonding state (FALSE is returned if not implemented).
virtual bool isBonded() const { return false; }
// Both of these methods are called only for contacts with facets where the wall
// resolution scheme is set the full. In such cases one might wish to propagate
// contact state information (e.g., shear force) from one active contact to another.
// See the Faceted Wall section in the documentation.
virtual void propagateStateInformation(IContactModelMechanical* oldCm,const CAxes &oldSystem=CAxes(),const CAxes &newSystem=CAxes());
virtual void setNonForcePropsFrom(IContactModel *oldCM);
/// Return the total force that the contact model holds.
virtual DVect getForce(const IContactMechanical *) const;
/// Return the total moment on 1 that the contact model holds
virtual DAVect getMomentOn1(const IContactMechanical *) const;
/// Return the total moment on 1 that the contact model holds
virtual DAVect getMomentOn2(const IContactMechanical *) const;
// Methods to get and set properties.
const double & kn() const {return kn_;}
void kn(const double &d) {kn_=d;}
const double & ks() const {return ks_;}
void ks(const double &d) {ks_=d;}
const double & fric() const {return fric_;}
void fric(const double &d) {fric_=d;}
const DVect & lin_F() const {return lin_F_;}
void lin_F(const DVect &f) { lin_F_=f;}
bool lin_S() const {return lin_S_;}
void lin_S(bool b) { lin_S_=b;}
uint lin_mode() const {return lin_mode_;}
void lin_mode(uint i) { lin_mode_= i;}
const double & rgap() const {return rgap_;}
void rgap(const double &d) {rgap_=d;}
bool hasDamping() const {return dpProps_ ? true : false;}
double dp_nratio() const {return (hasDamping() ? (dpProps_->dp_nratio_) : 0.0);}
void dp_nratio(const double &d) { if(!hasDamping()) return; dpProps_->dp_nratio_=d;}
double dp_sratio() const {return hasDamping() ? dpProps_->dp_sratio_: 0.0;}
void dp_sratio(const double &d) { if(!hasDamping()) return; dpProps_->dp_sratio_=d;}
int dp_mode() const {return hasDamping() ? dpProps_->dp_mode_: -1;}
void dp_mode(int i) { if(!hasDamping()) return; dpProps_->dp_mode_=i;}
DVect dp_F() const {return hasDamping() ? dpProps_->dp_F_: DVect(0.0);}
void dp_F(const DVect &f) { if(!hasDamping()) return; dpProps_->dp_F_=f;}
bool hasEnergies() const {return energies_ ? true:false;}
double estrain() const {return hasEnergies() ? energies_->estrain_: 0.0;}
void estrain(const double &d) { if(!hasEnergies()) return; energies_->estrain_=d;}
double eslip() const {return hasEnergies() ? energies_->eslip_: 0.0;}
void eslip(const double &d) { if(!hasEnergies()) return; energies_->eslip_=d;}
double edashpot() const {return hasEnergies() ? energies_->edashpot_: 0.0;}
void edashpot(const double &d) { if(!hasEnergies()) return; energies_->edashpot_=d;}
uint inheritanceField() const {return inheritanceField_;}
void inheritanceField(uint i) {inheritanceField_ = i;}
const DVect2 & effectiveTranslationalStiffness() const {return effectiveTranslationalStiffness_;}
void effectiveTranslationalStiffness(const DVect2 &v ) {effectiveTranslationalStiffness_=v;}
private:
// Index - used internally by PFC. Should be set to -1 in the cpp file.
static int index_;
// Structure to store the energies.
struct Energies {
Energies() : estrain_(0.0), eslip_(0.0),edashpot_(0.0) {}
double estrain_; // elastic energy stored in contact
double eslip_; // work dissipated by friction
double edashpot_; // work dissipated by dashpots
};
// Structure to store dashpot quantities.
struct dpProps {
dpProps() : dp_nratio_(0.0), dp_sratio_(0.0), dp_mode_(0), dp_F_(DVect(0.0)) {}
double dp_nratio_; // normal viscous critical damping ratio
double dp_sratio_; // shear viscous critical damping ratio
int dp_mode_; // for viscous mode (0-4) 0 = dashpots, 1 = tensile limit, 2 = shear limit, 3 = limit both
DVect dp_F_; // Force in the dashpots
};
bool updateKn(const IContactMechanical *con);
bool updateKs(const IContactMechanical *con);
bool updateFric(const IContactMechanical *con);
void updateEffectiveStiffness(ContactModelMechanicalState *state);
void setDampCoefficients(const double &mass,double *vcn,double *vcs);
// Contact model inheritance fields.
quint32 inheritanceField_;
// Effective translational stiffness.
DVect2 effectiveTranslationalStiffness_;
// linear model properties
double kn_; // Normal stiffness
double ks_; // Shear stiffness
double fric_; // Coulomb friction coefficient
DVect lin_F_; // Force carried in the linear model
bool lin_S_; // The current slip state
uint lin_mode_; // Specifies absolute (0) or incremental (1) calculation mode
double rgap_; // Reference gap
dpProps * dpProps_; // The viscous properties
double userArea_; // Area as specified by the user
Energies * energies_; // The energies
};
} // namespace cmodelsxd
// EoF
|
contactmodellinear.cpp
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 | // contactmodellinear.cpp
#include "contactmodellinear.h"
#include "../version.txt"
#include "contactmodel/src/contactmodelthermal.h"
#include "fish/src/parameter.h"
#include "utility/src/tptr.h"
#include "shared/src/mathutil.h"
#include "kernel/interface/iprogram.h"
#include "module/interface/icontact.h"
#include "module/interface/icontactmechanical.h"
#include "module/interface/icontactthermal.h"
#include "module/interface/ifishcalllist.h"
#include "module/interface/ipiece.h"
#include "module/interface/ipiecemechanical.h"
#ifdef LINEAR_LIB
#ifdef _WIN32
int __stdcall DllMain(void *,unsigned, void *) {
return 1;
}
#endif
extern "C" EXPORT_TAG const char *getName() {
#if DIM==3
return "contactmodelmechanical3dlinear";
#else
return "contactmodelmechanical2dlinear";
#endif
}
extern "C" EXPORT_TAG unsigned getMajorVersion() {
return MAJOR_VERSION
}
extern "C" EXPORT_TAG unsigned getMinorVersion() {
return MINOR_VERSION;
}
extern "C" EXPORT_TAG void *createInstance() {
cmodelsxd::ContactModelLinear *m = NEWC(cmodelsxd::ContactModelLinear());
return (void *)m;
}
#endif
namespace cmodelsxd {
static const quint32 linKnMask = 0x00002; // Base 1!
static const quint32 linKsMask = 0x00004;
static const quint32 linFricMask = 0x00008;
using namespace itasca;
int ContactModelLinear::index_ = -1;
UInt ContactModelLinear::getMinorVersion() const { return MINOR_VERSION;}
ContactModelLinear::ContactModelLinear() : inheritanceField_(linKnMask|linKsMask|linFricMask)
, effectiveTranslationalStiffness_(DVect2(0.0))
, kn_(0.0)
, ks_(0.0)
, fric_(0.0)
, lin_F_(DVect(0.0))
, lin_S_(false)
, lin_mode_(0)
, rgap_(0.0)
, dpProps_(0)
, userArea_(0)
, energies_(0) {
}
ContactModelLinear::~ContactModelLinear() {
// Make sure to clean up after yourself!
if (dpProps_)
delete dpProps_;
if (energies_)
delete energies_;
}
void ContactModelLinear::archive(ArchiveStream &stream) {
// The stream allows one to archive the values of the contact model
// so that it can be saved and restored. The minor version can be
// used here to allow for incremental changes to the contact model too.
stream & kn_;
stream & ks_;
stream & fric_;
stream & lin_F_;
stream & lin_S_;
stream & lin_mode_;
if (stream.getArchiveState()==ArchiveStream::Save) {
bool b = false;
if (dpProps_) {
b = true;
stream & b;
stream & dpProps_->dp_nratio_;
stream & dpProps_->dp_sratio_;
stream & dpProps_->dp_mode_;
stream & dpProps_->dp_F_;
}
else
stream & b;
b = false;
if (energies_) {
b = true;
stream & b;
stream & energies_->estrain_;
stream & energies_->eslip_;
stream & energies_->edashpot_;
}
else
stream & b;
} else {
bool b(false);
stream & b;
if (b) {
if (!dpProps_)
dpProps_ = NEWC(dpProps());
stream & dpProps_->dp_nratio_;
stream & dpProps_->dp_sratio_;
stream & dpProps_->dp_mode_;
stream & dpProps_->dp_F_;
}
stream & b;
if (b) {
if (!energies_)
energies_ = NEWC(Energies());
stream & energies_->estrain_;
stream & energies_->eslip_;
stream & energies_->edashpot_;
}
}
stream & inheritanceField_;
stream & effectiveTranslationalStiffness_;
if (stream.getArchiveState()==ArchiveStream::Save || stream.getRestoreVersion() == getMinorVersion())
stream & rgap_;
if (stream.getArchiveState() == ArchiveStream::Save || stream.getRestoreVersion() > 2)
stream & userArea_;
}
void ContactModelLinear::copy(const ContactModel *cm) {
// Copy all of the contact model properties. Used in the CMAT
// when a new contact is created.
ContactModelMechanical::copy(cm);
const ContactModelLinear *in = dynamic_cast<const ContactModelLinear*>(cm);
if (!in) throw std::runtime_error("Internal error: contact model dynamic cast failed.");
kn(in->kn());
ks(in->ks());
fric(in->fric());
lin_F(in->lin_F());
lin_S(in->lin_S());
lin_mode(in->lin_mode());
rgap(in->rgap());
if (in->hasDamping()) {
if (!dpProps_)
dpProps_ = NEWC(dpProps());
dp_nratio(in->dp_nratio());
dp_sratio(in->dp_sratio());
dp_mode(in->dp_mode());
dp_F(in->dp_F());
}
if (in->hasEnergies()) {
if (!energies_)
energies_ = NEWC(Energies());
estrain(in->estrain());
eslip(in->eslip());
edashpot(in->edashpot());
}
userArea_ = in->userArea_;
inheritanceField(in->inheritanceField());
effectiveTranslationalStiffness(in->effectiveTranslationalStiffness());
}
QVariant ContactModelLinear::getProperty(uint i,const IContact *con) const {
// Return the property. The IContact pointer is provided so that
// more complicated properties, depending on contact characteristics,
// can be calcualted.
QVariant var;
switch (i) {
case kwKn: return kn_;
case kwKs: return ks_;
case kwFric: return fric_;
case kwLinF: var.setValue(lin_F_); return var;
case kwLinS: return lin_S_;
case kwLinMode: return lin_mode_;
case kwRGap: return rgap_;
case kwEmod: {
const IContactMechanical *c(convert_getcast<IContactMechanical>(con));
if (c ==nullptr) return 0.0;
double rsq(std::max(c->getEnd1Curvature().y(),c->getEnd2Curvature().y()));
double rsum(0.0);
if (c->getEnd1Curvature().y())
rsum += 1.0/c->getEnd1Curvature().y();
if (c->getEnd2Curvature().y())
rsum += 1.0/c->getEnd2Curvature().y();
if (userArea_) {
#ifdef THREED
rsq = std::sqrt(userArea_ / dPi);
#else
rsq = userArea_ / 2.0;
#endif
rsum = rsq + rsq;
rsq = 1. / rsq;
}
#ifdef TWOD
return (kn_ * rsum * rsq / 2.0);
#else
return (kn_ * rsum * rsq * rsq) / dPi;
#endif
}
case kwKRatio: return (ks_ == 0.0) ? 0.0 : (kn_/ks_);
case kwDpNRatio: return dpProps_ ? dpProps_->dp_nratio_ : 0;
case kwDpSRatio: return dpProps_ ? dpProps_->dp_sratio_ : 0;
case kwDpMode: return dpProps_ ? dpProps_->dp_mode_ : 0;
case kwDpF: {
dpProps_ ? var.setValue(dpProps_->dp_F_) : var.setValue(DVect(0.0));
return var;
}
case kwUserArea: return userArea_;
}
assert(0);
return QVariant();
}
bool ContactModelLinear::getPropertyGlobal(uint i) const {
// Returns whether or not a property is held in the global axis system (TRUE)
// or the local system (FALSE). Used by the plotting logic.
switch (i) {
case kwLinF:
case kwDpF:
return false;
}
return true;
}
bool ContactModelLinear::setProperty(uint i,const QVariant &v,IContact *) {
// Set a contact model property. Return value indicates that the timestep
// should be recalculated.
dpProps dp;
switch (i) {
case kwKn: {
if (!v.canConvert<double>())
throw Exception("kn must be a double.");
double val(v.toDouble());
if (val<0.0)
throw Exception("Negative kn not allowed.");
kn_ = val;
return true;
}
case kwKs: {
if (!v.canConvert<double>())
throw Exception("ks must be a double.");
double val(v.toDouble());
if (val<0.0)
throw Exception("Negative ks not allowed.");
ks_ = val;
return true;
}
case kwFric: {
if (!v.canConvert<double>())
throw Exception("fric must be a double.");
double val(v.toDouble());
if (val<0.0)
throw Exception("Negative fric not allowed.");
fric_ = val;
return false;
}
case kwLinF: {
if (!v.canConvert<DVect>())
throw Exception("lin_force must be a vector.");
DVect val(v.value<DVect>());
lin_F_ = val;
return false;
}
case kwLinMode: {
if (!v.canConvert<uint>())
throw Exception("lin_mode must be 0 (absolute) or 1 (incremental).");
uint val(v.toUInt());
if (val >1)
throw Exception("lin_mode must be 0 (absolute) or 1 (incremental).");
lin_mode_ = val;
return false;
}
case kwRGap: {
if (!v.canConvert<double>())
throw Exception("Reference gap must be a double.");
double val(v.toDouble());
rgap_ = val;
return false;
}
case kwDpNRatio: {
if (!v.canConvert<double>())
throw Exception("dp_nratio must be a double.");
double val(v.toDouble());
if (val<0.0)
throw Exception("Negative dp_nratio not allowed.");
if (val == 0.0 && !dpProps_)
return false;
if (!dpProps_)
dpProps_ = NEWC(dpProps());
dpProps_->dp_nratio_ = val;
return true;
}
case kwDpSRatio: {
if (!v.canConvert<double>())
throw Exception("dp_sratio must be a double.");
double val(v.toDouble());
if (val<0.0)
throw Exception("Negative dp_sratio not allowed.");
if (val == 0.0 && !dpProps_)
return false;
if (!dpProps_)
dpProps_ = NEWC(dpProps());
dpProps_->dp_sratio_ = val;
return true;
}
case kwDpMode: {
if (!v.canConvert<int>())
throw Exception("The viscous mode dp_mode must be 0, 1, 2, or 3.");
int val(v.toInt());
if (val == 0 && !dpProps_)
return false;
if (val < 0 || val > 3)
throw Exception("The viscous mode dp_mode must be 0, 1, 2, or 3.");
if (!dpProps_)
dpProps_ = NEWC(dpProps());
dpProps_->dp_mode_ = val;
return false;
}
case kwDpF: {
if (!v.canConvert<DVect>())
throw Exception("dp_force must be a vector.");
DVect val(v.value<DVect>());
if (val.fsum() == 0.0 && !dpProps_)
return false;
if (!dpProps_)
dpProps_ = NEWC(dpProps());
dpProps_->dp_F_ = val;
return false;
}
case kwUserArea: {
if (!v.canConvert<double>())
throw Exception("user_area must be a double.");
double val(v.toDouble());
if (val < 0.0)
throw Exception("Negative user_area not allowed.");
userArea_ = val;
return true;
}
}
return false;
}
bool ContactModelLinear::getPropertyReadOnly(uint i) const {
// Returns TRUE if a property is read only or FALSE otherwise.
switch (i) {
case kwDpF:
case kwLinS:
case kwEmod:
case kwKRatio:
return true;
default:
break;
}
return false;
}
bool ContactModelLinear::supportsInheritance(uint i) const {
// Returns TRUE if a property supports inheritance or FALSE otherwise.
switch (i) {
case kwKn:
case kwKs:
case kwFric:
return true;
default:
break;
}
return false;
}
QString ContactModelLinear::getMethodArguments(uint i) const {
// Return a list of contact model method argument names.
switch (i) {
case kwDeformability:
return "emod,kratio";
case kwArea:
return QString();
}
assert(0);
return QString();
}
bool ContactModelLinear::setMethod(uint i,const QVector<QVariant> &vl,IContact *con) {
// Apply the specified method.
IContactMechanical *c(convert_getcast<IContactMechanical>(con));
switch (i) {
case kwDeformability: {
double emod;
double krat;
if (vl.at(0).isNull())
throw Exception("Argument emod must be specified with method deformability in contact model %1.",getName());
emod = vl.at(0).toDouble();
if (emod<0.0)
throw Exception("Negative emod not allowed in contact model %1.",getName());
if (vl.at(1).isNull())
throw Exception("Argument kratio must be specified with method deformability in contact model %1.",getName());
krat = vl.at(1).toDouble();
if (krat<0.0)
throw Exception("Negative stiffness ratio not allowed in contact model %1.",getName());
double rsq(std::max(c->getEnd1Curvature().y(),c->getEnd2Curvature().y()));
double rsum(0.0);
if (c->getEnd1Curvature().y())
rsum += 1.0/c->getEnd1Curvature().y();
if (c->getEnd2Curvature().y())
rsum += 1.0/c->getEnd2Curvature().y();
if (userArea_) {
#ifdef THREED
rsq = std::sqrt(userArea_ / dPi);
#else
rsq = userArea_ / 2.0;
#endif
rsum = rsq + rsq;
rsq = 1. / rsq;
}
#ifdef TWOD
kn_ = 2.0 * emod / (rsq * rsum);
#else
kn_ = dPi * emod / (rsq * rsq * rsum);
#endif
ks_ = (krat == 0.0) ? 0.0 : kn_ / krat;
setInheritance(1,false);
setInheritance(2,false);
return true;
}
case kwArea: {
if (!userArea_) {
double rsq(1./std::max(c->getEnd1Curvature().y(),c->getEnd2Curvature().y()));
#ifdef THREED
userArea_ = rsq * rsq * dPi;
#else
userArea_ = rsq * 2.0;
#endif
}
return true;
}
}
return false;
}
double ContactModelLinear::getEnergy(uint i) const {
// Return an energy value.
double ret(0.0);
if (!energies_)
return ret;
switch (i) {
case kwEStrain: return energies_->estrain_;
case kwESlip: return energies_->eslip_;
case kwEDashpot: return energies_->edashpot_;
}
assert(0);
return ret;
}
bool ContactModelLinear::getEnergyAccumulate(uint i) const {
// Returns TRUE if the corresponding energy is accumulated or FALSE otherwise.
switch (i) {
case kwEStrain: return false;
case kwESlip: return true;
case kwEDashpot: return true;
}
assert(0);
return false;
}
void ContactModelLinear::setEnergy(uint i,const double &d) {
// Set an energy value.
if (!energies_) return;
switch (i) {
case kwEStrain: energies_->estrain_ = d; return;
case kwESlip: energies_->eslip_ = d; return;
case kwEDashpot: energies_->edashpot_= d; return;
}
assert(0);
return;
}
bool ContactModelLinear::validate(ContactModelMechanicalState *state,const double &) {
// Validate the / Prepare for entry into ForceDispLaw. The validate function is called when:
// (1) the contact is created, (2) a property of the contact that returns a true via
// the setProperty method has been modified and (3) when a set of cycles is executed
// via the {cycle N} command.
// Return value indicates contact activity (TRUE: active, FALSE: inactive).
assert(state);
const IContactMechanical *c = state->getMechanicalContact();
assert(c);
if (state->trackEnergy_)
activateEnergy();
if (inheritanceField_ & linKnMask)
updateKn(c);
if (inheritanceField_ & linKsMask)
updateKs(c);
if (inheritanceField_ & linFricMask)
updateFric(c);
updateEffectiveStiffness(state);
return checkActivity(state->gap_);
}
static const QString knstr("kn");
bool ContactModelLinear::updateKn(const IContactMechanical *con) {
assert(con);
QVariant v1 = con->getEnd1()->getProperty(knstr);
QVariant v2 = con->getEnd2()->getProperty(knstr);
if (!v1.isValid() || !v2.isValid())
return false;
double kn1 = v1.toDouble();
double kn2 = v2.toDouble();
double val = kn_;
if (kn1 && kn2)
kn_ = kn1*kn2/(kn1+kn2);
else if (kn1)
kn_ = kn1;
else if (kn2)
kn_ = kn2;
return ( (kn_ != val) );
}
static const QString ksstr("ks");
bool ContactModelLinear::updateKs(const IContactMechanical *con) {
assert(con);
QVariant v1 = con->getEnd1()->getProperty(ksstr);
QVariant v2 = con->getEnd2()->getProperty(ksstr);
if (!v1.isValid() || !v2.isValid())
return false;
double ks1 = v1.toDouble();
double ks2 = v2.toDouble();
double val = ks_;
if (ks1 && ks2)
ks_ = ks1*ks2/(ks1+ks2);
else if (ks1)
ks_ = ks1;
else if (ks2)
ks_ = ks2;
return ( (ks_ != val) );
}
static const QString fricstr("fric");
bool ContactModelLinear::updateFric(const IContactMechanical *con) {
assert(con);
QVariant v1 = con->getEnd1()->getProperty(fricstr);
QVariant v2 = con->getEnd2()->getProperty(fricstr);
if (!v1.isValid() || !v2.isValid())
return false;
double fric1 = std::max(0.0,v1.toDouble());
double fric2 = std::max(0.0,v2.toDouble());
double val = fric_;
fric_ = std::min(fric1,fric2);
return ( (fric_ != val) );
}
bool ContactModelLinear::endPropertyUpdated(const QString &name,const IContactMechanical *c) {
// The endPropertyUpdated method is called whenever a surface property (with a name
// that matches an inheritable contact model property name) of one of the contacting
// pieces is modified. This allows the contact model to update its associated
// properties. The return value denotes whether or not the update has affected
// the time step computation (by having modified the translational or rotational
// tangent stiffnesses). If true is returned, then the time step will be recomputed.
assert(c);
QStringList availableProperties = getProperties().simplified().replace(" ","").split(",",QString::SkipEmptyParts);
QRegExp rx(name,Qt::CaseInsensitive);
int idx = availableProperties.indexOf(rx)+1;
bool ret=false;
if (idx<=0)
return ret;
switch(idx) {
case kwKn: { //kn
if (inheritanceField_ & linKnMask)
ret = updateKn(c);
break;
}
case kwKs: { //ks
if (inheritanceField_ & linKsMask)
ret =updateKs(c);
break;
}
case kwFric: { //fric
if (inheritanceField_ & linFricMask)
updateFric(c);
break;
}
}
return ret;
}
void ContactModelLinear::updateEffectiveStiffness(ContactModelMechanicalState *) {
DVect2 ret(kn_,ks_);
// correction if viscous damping active
if (dpProps_) {
DVect2 correct(1.0);
if (dpProps_->dp_nratio_)
correct.rx() = sqrt(1.0+dpProps_->dp_nratio_*dpProps_->dp_nratio_) - dpProps_->dp_nratio_;
if (dpProps_->dp_sratio_)
correct.ry() = sqrt(1.0+dpProps_->dp_sratio_*dpProps_->dp_sratio_) - dpProps_->dp_sratio_;
ret /= (correct*correct);
}
effectiveTranslationalStiffness_ = ret;
}
bool ContactModelLinear::forceDisplacementLaw(ContactModelMechanicalState *state,const double ×tep) {
assert(state);
// Current overlap
double overlap = rgap_ - state->gap_;
// Relative translational increment
DVect trans = state->relativeTranslationalIncrement_;
// Correction factor to account for when the contact becomes newly active.
// We estimate the time of activity during the timestep when the contact has first
// become active and scale the forces accordingly.
double correction = 1.0;
// The contact was just activated from an inactive state
if (state->activated()) {
// Trigger the FISH callback if one is hooked up to the
// contact_activated event.
if (cmEvents_[fActivated] >= 0) {
// An FArray of QVariant is returned and these will be passed
// to the FISH function as an array of FISH symbols as the second
// argument to the FISH callback function.
auto c = state->getContact();
std::vector<fish::Parameter> arg = { fish::Parameter(c->getIThing()) };
IFishCallList *fi = const_cast<IFishCallList*>(state->getProgram()->findInterface<IFishCallList>());
fi->setCMFishCallArguments(c,arg,cmEvents_[fActivated]);
}
// Calculate the correction factor.
if (lin_mode_ == 0 && trans.x()) {
correction = -1.0*overlap / trans.x();
if (correction < 0)
correction = 1.0;
}
}
DVect lin_F_old = lin_F_;
if (lin_mode_ == 0)
lin_F_.rx() = overlap * kn_; // absolute mode for normal force calculation
else
lin_F_.rx() -= correction * trans.x() * kn_; // incremental mode for normal force calculation
// Normal force can only be positive.
lin_F_.rx() = std::max(0.0,lin_F_.x());
// Calculate the shear force.
DVect sforce(0.0);
// dim holds the dimension (e.g., 2 for 2D and 3 for 3D)
// Loop over the shear components (note: the 0 component is the normal component)
// and calculate the shear force.
for (int i=1; i<dim; ++i)
sforce.rdof(i) = lin_F_.dof(i) - trans.dof(i) * ks_ * correction;
// The canFail flag corresponds to whether or not the contact can undergo non-linear
// force-displacement response. If the SOLVE ELASTIC command is given then the
// canFail state is set to FALSE. Otherwise it is always TRUE.
if (state->canFail_) {
// Resolve sliding. This is the normal force multiplied by the coefficient of friction.
double crit = lin_F_.x() * fric_;
// The is the magnitude of the shear force.
double sfmag = sforce.mag();
// Sliding occurs when the magnitude of the shear force is greater than the
// critical value.
if (sfmag > crit) {
// Lower the shear force to the critical value for sliding.
double rat = crit / sfmag;
sforce *= rat;
// Handle the slip_change event if one has been hooked up. Sliding has commenced.
if (!lin_S_ && cmEvents_[fSlipChange] >= 0) {
auto c = state->getContact();
std::vector<fish::Parameter> arg = { fish::Parameter(c->getIThing()),
fish::Parameter() };
IFishCallList *fi = const_cast<IFishCallList*>(state->getProgram()->findInterface<IFishCallList>());
fi->setCMFishCallArguments(c,arg,cmEvents_[fSlipChange]);
}
lin_S_ = true;
} else {
// Handle the slip_change event if one has been hooked up and
// the contact was previously sliding. Sliding has ceased.
if (lin_S_) {
if (cmEvents_[fSlipChange] >= 0) {
auto c = state->getContact();
std::vector<fish::Parameter> arg = { fish::Parameter(c->getIThing()),
fish::Parameter((qint64)1) };
IFishCallList *fi = const_cast<IFishCallList*>(state->getProgram()->findInterface<IFishCallList>());
fi->setCMFishCallArguments(c,arg,cmEvents_[fSlipChange]);
}
lin_S_ = false;
}
}
}
// Set the shear components of the total force.
for (int i=1; i<dim; ++i)
lin_F_.rdof(i) = sforce.dof(i);
// Account for dashpot forces if the dashpot structure has been defined.
if (dpProps_) {
dpProps_->dp_F_.fill(0.0);
double vcn(0.0), vcs(0.0);
// Calculate the damping coefficients.
setDampCoefficients(state->inertialMass_,&vcn,&vcs);
// First damp the shear components
for (int i=1; i<dim; ++i)
dpProps_->dp_F_.rdof(i) = trans.dof(i) * (-1.0* vcs) / timestep;
// Damp the normal component
dpProps_->dp_F_.rx() -= trans.x() * vcn / timestep;
// Need to change behavior based on the dp_mode.
if ((dpProps_->dp_mode_ == 1 || dpProps_->dp_mode_ == 3)) {
// Limit in tension if not bonded.
if (dpProps_->dp_F_.x() + lin_F_.x() < 0)
dpProps_->dp_F_.rx() = - lin_F_.rx();
}
if (lin_S_ && dpProps_->dp_mode_ > 1) {
// Limit in shear if not sliding.
double dfn = dpProps_->dp_F_.rx();
dpProps_->dp_F_.fill(0.0);
dpProps_->dp_F_.rx() = dfn;
}
}
//Compute energies if energy tracking has been enabled.
if (state->trackEnergy_) {
assert(energies_);
energies_->estrain_ = 0.0;
if (kn_)
// Calcualte the strain energy.
energies_->estrain_ = 0.5*lin_F_.x()*lin_F_.x()/kn_;
if (ks_) {
DVect s = lin_F_;
s.rx() = 0.0;
double smag2 = s.mag2();
// Add the shear component of the strain energy.
energies_->estrain_ += 0.5*smag2 / ks_;
if (lin_S_) {
// If sliding calculate the slip energy and accumulate it.
lin_F_old.rx() = 0.0;
DVect avg_F_s = (s + lin_F_old)*0.5;
DVect u_s_el = (s - lin_F_old) / ks_;
DVect u_s(0.0);
for (int i=1; i<dim; ++i)
u_s.rdof(i) = trans.dof(i);
energies_->eslip_ -= std::min(0.0,(avg_F_s | (u_s + u_s_el)));
}
}
if (dpProps_) {
// Calculate damping energy (accumulated) if the dashpots are active.
energies_->edashpot_ -= dpProps_->dp_F_ | trans;
}
}
// This is just a sanity check to ensure, in debug mode, that the force isn't wonky.
assert(lin_F_ == lin_F_);
return true;
}
bool ContactModelLinear::thermalCoupling(ContactModelMechanicalState*, ContactModelThermalState* ts, IContactThermal*, const double&) {
// Account for thermal expansion in incremental mode
if (lin_mode_ == 0 || ts->gapInc_ == 0.0) return false;
DVect finc(0.0);
finc.rx() = kn_ * ts->gapInc_;
lin_F_ -= finc;
return true;
}
void ContactModelLinear::setForce(const DVect &v,IContact *c) {
lin_F(v);
if (v.x() > 0)
rgap_ = c->getGap() + v.x() / kn_;
}
void ContactModelLinear::propagateStateInformation(IContactModelMechanical* old,const CAxes &oldSystem,const CAxes &newSystem) {
// Only called for contacts with wall facets when the wall resolution scheme
// is set to full!
// Only do something if the contact model is of the same type
if (old->getContactModel()->getName().compare("linear",Qt::CaseInsensitive) == 0 && !isBonded()) {
ContactModelLinear *oldCm = (ContactModelLinear *)old;
#ifdef THREED
// Need to rotate just the shear component from oldSystem to newSystem
// Step 1 - rotate oldSystem so that the normal is the same as the normal of newSystem
DVect axis = oldSystem.e1() & newSystem.e1();
double c, ang, s;
DVect re2;
if (!checktol(axis.abs().maxComp(),0.0,1.0,1000)) {
axis = axis.unit();
c = oldSystem.e1()|newSystem.e1();
if (c > 0)
c = std::min(c,1.0);
else
c = std::max(c,-1.0);
ang = acos(c);
s = sin(ang);
double t = 1. - c;
DMatrix<3,3> rm;
rm.get(0,0) = t*axis.x()*axis.x() + c;
rm.get(0,1) = t*axis.x()*axis.y() - axis.z()*s;
rm.get(0,2) = t*axis.x()*axis.z() + axis.y()*s;
rm.get(1,0) = t*axis.x()*axis.y() + axis.z()*s;
rm.get(1,1) = t*axis.y()*axis.y() + c;
rm.get(1,2) = t*axis.y()*axis.z() - axis.x()*s;
rm.get(2,0) = t*axis.x()*axis.z() - axis.y()*s;
rm.get(2,1) = t*axis.y()*axis.z() + axis.x()*s;
rm.get(2,2) = t*axis.z()*axis.z() + c;
re2 = rm*oldSystem.e2();
}
else
re2 = oldSystem.e2();
// Step 2 - get the angle between the oldSystem rotated shear and newSystem shear
axis = re2 & newSystem.e2();
DVect2 tpf;
DMatrix<2,2> m;
if (!checktol(axis.abs().maxComp(),0.0,1.0,1000)) {
axis = axis.unit();
c = re2|newSystem.e2();
if (c > 0)
c = std::min(c,1.0);
else
c = std::max(c,-1.0);
ang = acos(c);
if (!checktol(axis.x(),newSystem.e1().x(),1.0,100))
ang *= -1;
s = sin(ang);
m.get(0,0) = c;
m.get(1,0) = s;
m.get(0,1) = -m.get(1,0);
m.get(1,1) = m.get(0,0);
tpf = m*DVect2(oldCm->lin_F_.y(),oldCm->lin_F_.z());
} else {
m.get(0,0) = 1.;
m.get(0,1) = 0.;
m.get(1,0) = 0.;
m.get(1,1) = 1.;
tpf = DVect2(oldCm->lin_F_.y(),oldCm->lin_F_.z());
}
DVect pforce = DVect(0,tpf.x(),tpf.y());
#else
oldSystem;
newSystem;
DVect pforce = DVect(0,oldCm->lin_F_.y());
#endif
for (int i=1; i<dim; ++i)
lin_F_.rdof(i) += pforce.dof(i);
if (lin_mode_ && oldCm->lin_mode_)
lin_F_.rx() = oldCm->lin_F_.x();
oldCm->lin_F_ = DVect(0.0);
if (dpProps_ && oldCm->dpProps_) {
#ifdef THREED
tpf = m*DVect2(oldCm->dpProps_->dp_F_.y(),oldCm->dpProps_->dp_F_.z());
pforce = DVect(oldCm->dpProps_->dp_F_.x(),tpf.x(),tpf.y());
#else
pforce = oldCm->dpProps_->dp_F_;
#endif
dpProps_->dp_F_ += pforce;
oldCm->dpProps_->dp_F_ = DVect(0.0);
}
if(oldCm->getEnergyActivated()) {
activateEnergy();
energies_->estrain_ = oldCm->energies_->estrain_;
energies_->edashpot_ = oldCm->energies_->edashpot_;
energies_->eslip_ = oldCm->energies_->eslip_;
oldCm->energies_->estrain_ = 0.0;
oldCm->energies_->edashpot_ = 0.0;
oldCm->energies_->eslip_ = 0.0;
}
rgap_ = oldCm->rgap_;
}
assert(lin_F_ == lin_F_);
}
void ContactModelLinear::setNonForcePropsFrom(IContactModel *old) {
// Only called for contacts with wall facets when the wall resolution scheme
// is set to full!
// Only do something if the contact model is of the same type
if (old->getName().compare("linear",Qt::CaseInsensitive) == 0 && !isBonded()) {
ContactModelLinear *oldCm = (ContactModelLinear *)old;
kn_ = oldCm->kn_;
ks_ = oldCm->ks_;
fric_ = oldCm->fric_;
lin_mode_ = oldCm->lin_mode_;
rgap_ = oldCm->rgap_;
userArea_ = oldCm->userArea_;
if (oldCm->dpProps_) {
if (!dpProps_)
dpProps_ = NEWC(dpProps());
dpProps_->dp_nratio_ = oldCm->dpProps_->dp_nratio_;
dpProps_->dp_sratio_ = oldCm->dpProps_->dp_sratio_;
dpProps_->dp_mode_ = oldCm->dpProps_->dp_mode_;
}
}
}
DVect ContactModelLinear::getForce(const IContactMechanical *) const {
DVect ret(lin_F_);
if (dpProps_)
ret += dpProps_->dp_F_;
return ret;
}
DAVect ContactModelLinear::getMomentOn1(const IContactMechanical *c) const {
DVect force = getForce(c);
DAVect ret(0.0);
c->updateResultingTorqueOn1Local(force,&ret);
return ret;
}
DAVect ContactModelLinear::getMomentOn2(const IContactMechanical *c) const {
DVect force = getForce(c);
DAVect ret(0.0);
c->updateResultingTorqueOn2Local(force,&ret);
return ret;
}
void ContactModelLinear::setDampCoefficients(const double &mass,double *vcn,double *vcs) {
*vcn = dpProps_->dp_nratio_ * 2.0 * sqrt(mass*(kn_));
*vcs = dpProps_->dp_sratio_ * 2.0 * sqrt(mass*(ks_));
}
} // namespace cmodelsxd
// EoF
|
Was this helpful? ... | 3DEC © 2019, Itasca | Updated: Feb 25, 2024 |