Linear Contact Bond Model Implementation
See this file for the documentation of this contact model.
contactmodellinearcbond.h
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 | #pragma once
// contactmodellinearcbond.h
#include "contactmodel/src/contactmodelmechanical.h"
#ifdef LINEARCBOND_LIB
# define LINEARCBOND_EXPORT EXPORT_TAG
#elif defined(NO_MODEL_IMPORT)
# define LINEARCBOND_EXPORT
#else
# define LINEARCBOND_EXPORT IMPORT_TAG
#endif
namespace cmodelsxd {
using namespace itasca;
class ContactModelLinearCBond : public ContactModelMechanical {
public:
LINEARCBOND_EXPORT ContactModelLinearCBond();
LINEARCBOND_EXPORT virtual ~ContactModelLinearCBond();
virtual void copy(const ContactModel *c) override;
virtual void archive(ArchiveStream &);
virtual QString getName() const { return "linearcbond"; }
virtual void setIndex(int i) { index_=i;}
virtual int getIndex() const {return index_;}
enum PropertyKeys {
kwKn=1
, kwKs
, kwFric
, kwLinF
, kwLinS
, kwLinMode
, kwRGap
, kwEmod
, kwKRatio
, kwDpNRatio
, kwDpSRatio
, kwDpMode
, kwDpF
, kwCbState
, kwCbTenF
, kwCbShearF
, kwCbTStr
, kwCbSStr
, kwUserArea
};
virtual QString getProperties() const {
return "kn"
",ks"
",fric"
",lin_force"
",lin_slip"
",lin_mode"
",rgap"
",emod"
",kratio"
",dp_nratio"
",dp_sratio"
",dp_mode"
",dp_force"
",cb_state"
",cb_tenf"
",cb_shearf"
",cb_tens"
",cb_shears"
",user_area";
}
enum EnergyKeys { kwEStrain=1,kwESlip,kwEDashpot};
virtual QString getEnergies() const { return "energy-strain,energy-slip,energy-dashpot";}
virtual double getEnergy(uint i) const; // Base 1
virtual bool getEnergyAccumulate(uint i) const; // Base 1
virtual void setEnergy(uint i,const double &d); // Base 1
virtual void activateEnergy() { if (energies_) return; energies_ = NEWC(Energies());}
virtual bool getEnergyActivated() const {return (energies_ !=0);}
enum FishCallEvents {fActivated=0,fBondBreak, fSlipChange };
virtual QString getFishCallEvents() const { return "contact_activated,bond_break,slip_change"; }
virtual QVariant getProperty(uint i,const IContact *) const;
virtual bool getPropertyGlobal(uint i) const;
virtual bool setProperty(uint i,const QVariant &v,IContact *);
virtual bool getPropertyReadOnly(uint i) const;
virtual bool supportsInheritance(uint i) const;
virtual bool getInheritance(uint i) const { assert(i<32); quint32 mask = to<quint32>(1 << i); return (inheritanceField_ & mask) ? true : false; }
virtual void setInheritance(uint i,bool b) { assert(i<32); quint32 mask = to<quint32>(1 << i); if (b) inheritanceField_ |= mask; else inheritanceField_ &= ~mask; }
enum MethodKeys {
kwDeformability=1
, kwCbBond
, kwCbStrength
, kwCbUnbond
, kwArea
};
virtual QString getMethods() const {
return "deformability"
",bond"
",cb_strength"
",unbond"
",area";
}
virtual QString getMethodArguments(uint i) const;
virtual bool setMethod(uint i,const QVector<QVariant> &vl,IContact *con=0); // Base 1 - returns true if timestep contributions need to be updated
virtual uint getMinorVersion() const;
virtual bool validate(ContactModelMechanicalState *state,const double ×tep);
virtual bool endPropertyUpdated(const QString &name,const IContactMechanical *c);
virtual bool forceDisplacementLaw(ContactModelMechanicalState *state,const double ×tep);
virtual DVect2 getEffectiveTranslationalStiffness() const { DVect2 ret = effectiveTranslationalStiffness_; return ret;}
virtual bool thermalCoupling(ContactModelMechanicalState*, ContactModelThermalState*, IContactThermal*, const double&);
virtual DAVect getEffectiveRotationalStiffness() const { return DAVect(0.0);}
virtual ContactModelLinearCBond *clone() const override { return NEWC(ContactModelLinearCBond()); }
virtual double getActivityDistance() const {return rgap_;}
virtual bool isOKToDelete() const { return !isBonded(); }
virtual void resetForcesAndMoments() { lin_F(DVect(0.0)); dp_F(DVect(0.0)); if (energies_) energies_->estrain_ = 0.0; }
virtual void setForce(const DVect &v,IContact *c);
virtual void setArea(const double &d) { userArea_ = d; }
virtual double getArea() const { return userArea_; }
virtual bool checkActivity(const double &gap) { return (gap <= rgap_ || isBonded()); }
virtual bool isSliding() const { return lin_S_; }
virtual bool isBonded() const { return (cb_state_==3); }
virtual void unbond() { cb_state_ = 0; }
virtual void propagateStateInformation(IContactModelMechanical* oldCm,const CAxes &oldSystem=CAxes(),const CAxes &newSystem=CAxes());
virtual void setNonForcePropsFrom(IContactModel *oldCM);
const double & kn() const {return kn_;}
void kn(const double &d) {kn_=d;}
const double & ks() const {return ks_;}
void ks(const double &d) {ks_=d;}
const double & fric() const {return fric_;}
void fric(const double &d) {fric_=d;}
const DVect & lin_F() const {return lin_F_;}
void lin_F(const DVect &f) { lin_F_=f;}
bool lin_S() const {return lin_S_;}
void lin_S(bool b) { lin_S_=b;}
uint lin_mode() const {return lin_mode_;}
void lin_mode(uint i) { lin_mode_=i;}
const double & rgap() const {return rgap_;}
void rgap(const double &d) {rgap_=d;}
uint cb_state() const {return cb_state_;}
void cb_state(uint b) { cb_state_=b;}
const double & cb_tenF() const {return cb_tenF_;}
void cb_tenF(const double &d) {cb_tenF_=d;}
const double & cb_shearF() const {return cb_shearF_;}
void cb_shearF(const double &d) {cb_shearF_=d;}
bool hasDamping() const {return dpProps_ ? true : false;}
double dp_nratio() const {return (hasDamping() ? (dpProps_->dp_nratio_) : 0.0);}
void dp_nratio(const double &d) { if(!hasDamping()) return; dpProps_->dp_nratio_=d;}
double dp_sratio() const {return hasDamping() ? dpProps_->dp_sratio_: 0.0;}
void dp_sratio(const double &d) { if(!hasDamping()) return; dpProps_->dp_sratio_=d;}
int dp_mode() const {return hasDamping() ? dpProps_->dp_mode_: -1;}
void dp_mode(int i) { if(!hasDamping()) return; dpProps_->dp_mode_=i;}
DVect dp_F() const {return hasDamping() ? dpProps_->dp_F_: DVect(0.0);}
void dp_F(const DVect &f) { if(!hasDamping()) return; dpProps_->dp_F_=f;}
bool hasEnergies() const {return energies_ ? true:false;}
double estrain() const {return hasEnergies() ? energies_->estrain_: 0.0;}
void estrain(const double &d) { if(!hasEnergies()) return; energies_->estrain_=d;}
double eslip() const {return hasEnergies() ? energies_->eslip_: 0.0;}
void eslip(const double &d) { if(!hasEnergies()) return; energies_->eslip_=d;}
double edashpot() const {return hasEnergies() ? energies_->edashpot_: 0.0;}
void edashpot(const double &d) { if(!hasEnergies()) return; energies_->edashpot_=d;}
uint inheritanceField() const {return inheritanceField_;}
void inheritanceField(uint i) {inheritanceField_ = i;}
const DVect2 & effectiveTranslationalStiffness() const {return effectiveTranslationalStiffness_;}
void effectiveTranslationalStiffness(const DVect2 &v ) {effectiveTranslationalStiffness_=v;}
/// Return the total force that the contact model holds.
virtual DVect getForce(const IContactMechanical *) const;
/// Return the total moment on 1 that the contact model holds
virtual DAVect getMomentOn1(const IContactMechanical *) const;
/// Return the total moment on 1 that the contact model holds
virtual DAVect getMomentOn2(const IContactMechanical *) const;
private:
static int index_;
struct Energies {
Energies() : estrain_(0.0), eslip_(0.0),edashpot_(0.0) {}
double estrain_; // elastic energy stored in contact
double eslip_; // work dissipated by friction
double edashpot_; // work dissipated by dashpots
};
struct dpProps {
dpProps() : dp_nratio_(0.0), dp_sratio_(0.0), dp_mode_(0), dp_F_(DVect(0.0)) {}
double dp_nratio_; // normal viscous critical damping ratio
double dp_sratio_; // shear viscous critical damping ratio
int dp_mode_; // for viscous mode (0-4) 0 = dashpots, 1 = tensile limit, 2 = shear limit, 3 = limit both
DVect dp_F_; // Force in the dashpots
};
bool updateKn(const IContactMechanical *con);
bool updateKs(const IContactMechanical *con);
bool updateFric(const IContactMechanical *con);
void updateEffectiveStiffness(ContactModelMechanicalState *state);
void setDampCoefficients(const double &mass,double *vcn,double *vcs);
// inheritance fields
quint32 inheritanceField_;
// linear model
double kn_; // normal stiffness
double ks_; // shear stiffness
double fric_; // Coulomb friction coefficient
DVect lin_F_; // Force carried in the linear model
bool lin_S_; // current slip state
uint lin_mode_; // specifies incremental or absolute for the the linear part
double rgap_; // reference gap
uint cb_state_; // Bond state - 0 (NBNF), 1 (NBFT), 2 (NBFS), 3 (B)
double cb_tenF_;
double cb_shearF_;
dpProps * dpProps_; // The viscous properties
double userArea_; // Area as specified by the user
Energies * energies_; // energies
DVect2 effectiveTranslationalStiffness_;
};
} // namespace itascaxd
// EoF
|
contactmodellinearcbond.cpp
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 | // contactmodellinearcbond.cpp
#include "contactmodellinearcbond.h"
#include "../version.txt"
#include "contactmodel/src/contactmodelthermal.h"
#include "fish/src/parameter.h"
#include "utility/src/tptr.h"
#include "shared/src/mathutil.h"
#include "base/src/basetoqt.h"
#include "kernel/interface/iprogram.h"
#include "module/interface/icontact.h"
#include "module/interface/icontactmechanical.h"
#include "module/interface/icontactthermal.h"
#include "module/interface/ifishcalllist.h"
#include "module/interface/ipiece.h"
#include "module/interface/ipiecemechanical.h"
#ifdef LINEARCBOND_LIB
#ifdef _WIN32
int __stdcall DllMain(void *,unsigned, void *)
{
return 1;
}
#endif
extern "C" EXPORT_TAG const char *getName()
{
#if DIM==3
return "contactmodelmechanical3dlinearcbond";
#else
return "contactmodelmechanical2dlinearcbond";
#endif
}
extern "C" EXPORT_TAG unsigned getMajorVersion()
{
return MAJOR_VRESION;
}
extern "C" EXPORT_TAG unsigned getMinorVersion()
{
return MINOR_VERSION;
}
extern "C" EXPORT_TAG void *createInstance()
{
cmodelsxd::ContactModelLinearCBond *m = NEWC(cmodelsxd::ContactModelLinearCBond());
return (void *)m;
}
#endif // LINEARCBOND_EXPORTS
namespace cmodelsxd {
static const quint32 linKnMask = 0x00002; // Base 1!
static const quint32 linKsMask = 0x00004;
static const quint32 linFricMask = 0x00008;
using namespace itasca;
int ContactModelLinearCBond::index_ = -1;
UInt ContactModelLinearCBond::getMinorVersion() const { return MINOR_VERSION;}
ContactModelLinearCBond::ContactModelLinearCBond() : inheritanceField_(linKnMask|linKsMask|linFricMask)
, kn_(0.0)
, ks_(0.0)
, fric_(0.0)
, lin_F_(DVect(0.0))
, lin_S_(false)
, lin_mode_(0)
, rgap_(0.0)
, cb_state_(0)
, cb_tenF_(0.0)
, cb_shearF_(0.0)
, dpProps_(0)
, userArea_(0)
, energies_(0)
, effectiveTranslationalStiffness_(DVect2(0.0)) {
// setFromParent(ContactModelMechanicalList::instance()->find(getName()));
}
ContactModelLinearCBond::~ContactModelLinearCBond() {
if (dpProps_)
delete dpProps_;
if (energies_)
delete energies_;
}
void ContactModelLinearCBond::archive(ArchiveStream &stream) {
stream & kn_;
stream & ks_;
stream & fric_;
stream & lin_F_;
stream & lin_S_;
stream & lin_mode_;
stream & cb_state_;
stream & cb_tenF_;
stream & cb_shearF_;
if (stream.getArchiveState()==ArchiveStream::Save) {
bool b = false;
if (dpProps_) {
b = true;
stream & b;
stream & dpProps_->dp_nratio_;
stream & dpProps_->dp_sratio_;
stream & dpProps_->dp_mode_;
stream & dpProps_->dp_F_;
}
else
stream & b;
b = false;
if (energies_) {
b = true;
stream & b;
stream & energies_->estrain_;
stream & energies_->eslip_;
stream & energies_->edashpot_;
}
else
stream & b;
} else {
bool b(false);
stream & b;
if (b) {
if (!dpProps_)
dpProps_ = NEWC(dpProps());
stream & dpProps_->dp_nratio_;
stream & dpProps_->dp_sratio_;
stream & dpProps_->dp_mode_;
stream & dpProps_->dp_F_;
}
stream & b;
if (b) {
if (!energies_)
energies_ = NEWC(Energies());
stream & energies_->estrain_;
stream & energies_->eslip_;
stream & energies_->edashpot_;
}
}
stream & inheritanceField_;
stream & effectiveTranslationalStiffness_;
if (stream.getArchiveState()==ArchiveStream::Save || stream.getRestoreVersion() == getMinorVersion())
stream & rgap_;
if (stream.getArchiveState() == ArchiveStream::Save || stream.getRestoreVersion() > 2)
stream & userArea_;
}
void ContactModelLinearCBond::copy(const ContactModel *cm) {
ContactModelMechanical::copy(cm);
const ContactModelLinearCBond *in = dynamic_cast<const ContactModelLinearCBond*>(cm);
if (!in) throw std::runtime_error("Internal error: contact model dynamic cast failed.");
kn(in->kn());
ks(in->ks());
fric(in->fric());
lin_F(in->lin_F());
lin_S(in->lin_S());
lin_mode(in->lin_mode());
rgap(in->rgap());
cb_state(in->cb_state());
cb_tenF(in->cb_tenF());
cb_shearF(in->cb_shearF());
if (in->hasDamping()) {
if (!dpProps_)
dpProps_ = NEWC(dpProps());
dp_nratio(in->dp_nratio());
dp_sratio(in->dp_sratio());
dp_mode(in->dp_mode());
dp_F(in->dp_F());
}
if (in->hasEnergies()) {
if (!energies_)
energies_ = NEWC(Energies());
estrain(in->estrain());
eslip(in->eslip());
edashpot(in->edashpot());
}
userArea_ = in->userArea_;
inheritanceField(in->inheritanceField());
effectiveTranslationalStiffness(in->effectiveTranslationalStiffness());
}
QVariant ContactModelLinearCBond::getProperty(uint i,const IContact *con) const {
QVariant var;
bool nstr = false;
switch (i) {
case kwKn: return kn_;
case kwKs: return ks_;
case kwFric: return fric_;
case kwLinF: var.setValue(lin_F_); return var;
case kwLinS: return lin_S_;
case kwLinMode: return lin_mode_;
case kwRGap: return rgap_;
case kwEmod: {
const IContactMechanical *c(convert_getcast<IContactMechanical>(con));
if (c ==nullptr) return 0.0;
double rsq(std::max(c->getEnd1Curvature().y(),c->getEnd2Curvature().y()));
double rsum(0.0);
if (c->getEnd1Curvature().y())
rsum += 1.0/c->getEnd1Curvature().y();
if (c->getEnd2Curvature().y())
rsum += 1.0/c->getEnd2Curvature().y();
if (userArea_) {
#ifdef THREED
rsq = std::sqrt(userArea_ / dPi);
#else
rsq = userArea_ / 2.0;
#endif
rsum = rsq + rsq;
rsq = 1. / rsq;
}
#ifdef TWOD
return (kn_ * rsum * rsq / 2.0);
#else
return (kn_ * rsum * rsq * rsq) / dPi;
#endif
}
case kwKRatio: return (ks_ == 0.0) ? 0.0 : (kn_/ks_);
case kwDpNRatio: return dpProps_ ? dpProps_->dp_nratio_ : 0;
case kwDpSRatio: return dpProps_ ? dpProps_->dp_sratio_ : 0;
case kwDpMode: return dpProps_ ? dpProps_->dp_mode_ : 0;
case kwDpF: {
dpProps_ ? var.setValue(dpProps_->dp_F_) : var.setValue(DVect(0.0));
return var;
}
case kwCbState: return cb_state_;
case kwCbTenF: return cb_tenF_;
case kwCbShearF: return cb_shearF_;
case kwCbTStr: nstr = true;
case kwCbSStr: {
const IContactMechanical *c(convert_getcast<IContactMechanical>(con));
if (c ==nullptr) return 0.0;
double tmp(std::max(c->getEnd1Curvature().y(),c->getEnd2Curvature().y()));
if (userArea_) {
#ifdef THREED
tmp = std::sqrt(userArea_ / dPi);
#else
tmp = userArea_ / 2.0;
#endif
tmp = 1. / tmp;
}
if (nstr) {
#ifdef TWOD
return (cb_tenF_ * tmp / 2.0);
#else
return (cb_tenF_ * tmp * tmp / dPi);
#endif
} else {
#ifdef TWOD
return (cb_shearF_ * tmp / 2.0);
#else
return (cb_shearF_ * tmp * tmp / dPi);
#endif
}
}
case kwUserArea: return userArea_;
}
assert(0);
return QVariant();
}
bool ContactModelLinearCBond::getPropertyGlobal(uint i) const {
switch (i) {
case kwLinF:
case kwDpF:
return false;
}
return true;
}
bool ContactModelLinearCBond::setProperty(uint i,const QVariant &v,IContact *) {
dpProps dp;
switch (i) {
case kwKn: {
if (!v.canConvert<double>())
throw Exception("kn must be a double.");
double val(v.toDouble());
if (val<0.0)
throw Exception("Negative kn not allowed.");
kn_ = val;
return true;
}
case kwKs: {
if (!v.canConvert<double>())
throw Exception("ks must be a double.");
double val(v.toDouble());
if (val<0.0)
throw Exception("Negative ks not allowed.");
ks_ = val;
return true;
}
case kwFric: {
if (!v.canConvert<double>())
throw Exception("fric must be a double.");
double val(v.toDouble());
if (val<0.0)
throw Exception("Negative fric not allowed.");
fric_ = val;
return false;
}
case kwCbTenF: {
if (!v.canConvert<double>())
throw Exception("cb_tenf must be a double.");
double val(v.toDouble());
if (val<0.0)
throw Exception("Negative cb_tenf not allowed.");
cb_tenF_ = val;
return false;
}
case kwCbShearF: {
if (!v.canConvert<double>())
throw Exception("cb_shearf must be a double.");
double val(v.toDouble());
if (val<0.0)
throw Exception("Negative cb_shearf not allowed.");
cb_shearF_ = val;
return false;
}
case kwLinF: {
if (!v.canConvert<DVect>())
throw Exception("lin_force must be a vector.");
DVect val(v.value<DVect>());
lin_F_ = val;
return false;
}
case kwLinMode: {
if (!v.canConvert<uint>())
throw Exception("lin_mode must be 0 (absolute) or 1 (incremental).");
uint val(v.toUInt());
if (val>1)
throw Exception("lin_mode must be 0 (absolute) or 1 (incremental).");
lin_mode_ = val;
return false;
}
case kwRGap: {
if (!v.canConvert<double>())
throw Exception("Reference gap must be a double.");
double val(v.toDouble());
rgap_ = val;
return false;
}
case kwDpNRatio: {
if (!v.canConvert<double>())
throw Exception("dp_nratio must be a double.");
double val(v.toDouble());
if (val<0.0)
throw Exception("Negative dp_nratio not allowed.");
if (val == 0.0 && !dpProps_)
return false;
if (!dpProps_)
dpProps_ = NEWC(dpProps());
dpProps_->dp_nratio_ = val;
return true;
}
case kwDpSRatio: {
if (!v.canConvert<double>())
throw Exception("dp_sratio must be a double.");
double val(v.toDouble());
if (val<0.0)
throw Exception("Negative dp_sratio not allowed.");
if (val == 0.0 && !dpProps_)
return false;
if (!dpProps_)
dpProps_ = NEWC(dpProps());
dpProps_->dp_sratio_ = val;
return true;
}
case kwDpMode: {
if (!v.canConvert<int>())
throw Exception("The viscous mode dp_mode must be 0, 1, 2, or 3.");
int val(v.toInt());
if (val == 0 && !dpProps_)
return false;
if (val < 0 || val > 3)
throw Exception("The dashpot mode dp_mode must be 0, 1, 2, or 3.");
if (!dpProps_)
dpProps_ = NEWC(dpProps());
dpProps_->dp_mode_ = val;
return false;
}
case kwDpF: {
if (!v.canConvert<DVect>())
throw Exception("dp_force must be a vector.");
DVect val(v.value<DVect>());
if (val.fsum() == 0.0 && !dpProps_)
return false;
if (!dpProps_)
dpProps_ = NEWC(dpProps());
dpProps_->dp_F_ = val;
return false;
}
case kwUserArea: {
if (!v.canConvert<double>())
throw Exception("user_area must be a double.");
double val(v.toDouble());
if (val < 0.0)
throw Exception("Negative user_area not allowed.");
userArea_ = val;
return true;
}
}
return false;
}
bool ContactModelLinearCBond::getPropertyReadOnly(uint i) const {
switch (i) {
case kwDpF:
case kwLinS:
case kwEmod:
case kwKRatio:
case kwCbState:
case kwCbTStr:
case kwCbSStr:
return true;
default:
break;
}
return false;
}
bool ContactModelLinearCBond::supportsInheritance(uint i) const {
switch (i) {
case kwKn:
case kwKs:
case kwFric:
return true;
default:
break;
}
return false;
}
QString ContactModelLinearCBond::getMethodArguments(uint i) const {
switch (i) {
case kwCbBond:
return "gap";
case kwDeformability:
return "emod,kratio";
case kwCbStrength:
return "tensile,shear";
case kwCbUnbond:
return "gap";
case kwArea:
return QString();
}
assert(0);
return "";
}
bool ContactModelLinearCBond::setMethod(uint i,const QVector<QVariant> &vl,IContact *con) {
IContactMechanical *c(convert_getcast<IContactMechanical>(con));
switch (i) {
case kwCbBond: {
if (cb_state_ == 3) return false;
double mingap = -1.0 * limits<double>::max();
double maxgap = 0;
if (vl.at(0).canConvert<Double>())
maxgap = vl.at(0).toDouble();
else if (vl.at(0).canConvert<DVect2>()) {
DVect2 value = vl.at(0).value<DVect2>();
mingap = value.minComp();
maxgap = value.maxComp();
} else if (!vl.at(0).isNull())
throw Exception("gap value %1 not recognized in method bond in contact model %2.",vl.at(0),getName());
double gap = c->getGap();
if ( gap >= mingap && gap <= maxgap)
cb_state_ = 3;
return false;
}
case kwCbUnbond: {
if (cb_state_ == 0) return false;
double mingap = -1.0 * limits<double>::max();
double maxgap = 0;
if (vl.at(0).canConvert<double>())
maxgap = vl.at(0).toDouble();
else if (vl.at(0).canConvert<DVect2>()) {
DVect2 value = vl.at(0).value<DVect2>();
mingap = value.minComp();
maxgap = value.maxComp();
}
else if (!vl.at(0).isNull())
throw Exception("gap value %1 not recognized in method unbond in contact model %2.",vl.at(0),getName());
double gap = c->getGap();
if ( gap >= mingap && gap <= maxgap)
cb_state_ = 0;
return false;
}
case kwDeformability: {
double emod(0.0);
double krat(0.0);
if (vl.at(0).isNull())
throw Exception("Argument emod must be specified with method deformability in contact model %1.",getName());
emod = vl.at(0).toDouble();
if (emod<0.0)
throw Exception("Negative emod not allowed in contact model %1.",getName());
if (vl.at(1).isNull())
throw Exception("Argument kratio must be specified with method deformability in contact model %1.",getName());
krat = vl.at(1).toDouble();
if (krat<0.0)
throw Exception("Negative linear stiffness ratio not allowed in contact model %1.",getName());
double rsq(std::max(c->getEnd1Curvature().y(),c->getEnd2Curvature().y()));
double rsum(0.0);
if (c->getEnd1Curvature().y())
rsum += 1.0/c->getEnd1Curvature().y();
if (c->getEnd2Curvature().y())
rsum += 1.0/c->getEnd2Curvature().y();
if (userArea_) {
#ifdef THREED
rsq = std::sqrt(userArea_ / dPi);
#else
rsq = userArea_ / 2.0;
#endif
rsum = rsq + rsq;
rsq = 1. / rsq;
}
#ifdef TWOD
kn_ = 2.0 * emod / (rsq * rsum);
#else
kn_ = dPi * emod / (rsq * rsq * rsum);
#endif
ks_ = (krat == 0.0) ? 0.0 : kn_ / krat;
setInheritance(1,false);
setInheritance(2,false);
return true;
}
case kwCbStrength: {
if (cb_state_ != 3) return false;
double nval(0.0);
double sval(0.0);
if (vl.at(0).isNull())
throw Exception("tensile value must be specified with method cb_strength in contact model %1.",getName());
nval = vl.at(0).toDouble();
if (nval<0.0)
throw Exception("Negative tensile strength not allowed in contact model %1.",getName());
if (vl.at(1).isNull())
throw Exception("shear value must be specified with method cb_strength in contact model %1.",getName());
sval = vl.at(1).toDouble();
if (sval<0.0)
throw Exception("Negative shear strength not allowed in contact model %1.",getName());
double tmp(std::max(c->getEnd1Curvature().y(),c->getEnd2Curvature().y()));
if (userArea_) {
#ifdef THREED
tmp = std::sqrt(userArea_ / dPi);
#else
tmp = userArea_ / 2.0;
#endif
tmp = 1. / tmp;
}
#ifdef TWOD
cb_tenF_ = nval * 2.0 / tmp;
cb_shearF_ = sval * 2.0 / tmp;
#else
cb_tenF_ = nval * dPi / ( tmp * tmp );
cb_shearF_ = sval * dPi / (tmp * tmp);
#endif
return false;
}
case kwArea: {
if (!userArea_) {
double rsq(1./std::max(c->getEnd1Curvature().y(),c->getEnd2Curvature().y()));
#ifdef THREED
userArea_ = rsq * rsq * dPi;
#else
userArea_ = rsq * 2.0;
#endif
}
return true;
}
}
return false;
}
double ContactModelLinearCBond::getEnergy(uint i) const {
double ret(0.0);
if (!energies_)
return ret;
switch (i) {
case kwEStrain: return energies_->estrain_;
case kwESlip: return energies_->eslip_;
case kwEDashpot: return energies_->edashpot_;
}
assert(0);
return ret;
}
bool ContactModelLinearCBond::getEnergyAccumulate(uint i) const {
switch (i) {
case kwEStrain: return false;
case kwESlip: return true;
case kwEDashpot: return true;
}
assert(0);
return false;
}
void ContactModelLinearCBond::setEnergy(uint i,const double &d) {
if (!energies_) return;
switch (i) {
case kwEStrain: energies_->estrain_ = d; return;
case kwESlip: energies_->eslip_ = d; return;
case kwEDashpot: energies_->edashpot_= d; return;
}
assert(0);
return;
}
bool ContactModelLinearCBond::validate(ContactModelMechanicalState *state,const double &) {
assert(state);
const IContactMechanical *c = state->getMechanicalContact();
assert(c);
if (state->trackEnergy_)
activateEnergy();
if (inheritanceField_ & linKnMask)
updateKn(c);
if (inheritanceField_ & linKsMask)
updateKs(c);
if (inheritanceField_ & linFricMask)
updateFric(c);
updateEffectiveStiffness(state);
return checkActivity(state->gap_);
}
static const QString knstr("kn");
bool ContactModelLinearCBond::updateKn(const IContactMechanical *con) {
assert(con);
QVariant v1 = con->getEnd1()->getProperty(knstr);
QVariant v2 = con->getEnd2()->getProperty(knstr);
if (!v1.isValid() || !v2.isValid())
return false;
double kn1 = v1.toDouble();
double kn2 = v2.toDouble();
double val = kn_;
if (kn1 && kn2)
kn_ = kn1*kn2/(kn1+kn2);
else if (kn1)
kn_ = kn1;
else if (kn2)
kn_ = kn2;
return ( (kn_ != val) );
}
static const QString ksstr("ks");
bool ContactModelLinearCBond::updateKs(const IContactMechanical *con) {
assert(con);
QVariant v1 = con->getEnd1()->getProperty(ksstr);
QVariant v2 = con->getEnd2()->getProperty(ksstr);
if (!v1.isValid() || !v2.isValid())
return false;
double ks1 = v1.toDouble();
double ks2 = v2.toDouble();
double val = ks_;
if (ks1 && ks2)
ks_ = ks1*ks2/(ks1+ks2);
else if (ks1)
ks_ = ks1;
else if (ks2)
ks_ = ks2;
return ( (ks_ != val) );
}
static const QString fricstr("fric");
bool ContactModelLinearCBond::updateFric(const IContactMechanical *con) {
assert(con);
QVariant v1 = con->getEnd1()->getProperty(fricstr);
QVariant v2 = con->getEnd2()->getProperty(fricstr);
if (!v1.isValid() || !v2.isValid())
return false;
double fric1 = std::max(0.0,v1.toDouble());
double fric2 = std::max(0.0,v2.toDouble());
double val = fric_;
fric_ = std::min(fric1,fric2);
return ( (fric_ != val) );
}
bool ContactModelLinearCBond::endPropertyUpdated(const QString &name,const IContactMechanical *c) {
assert(c);
QStringList availableProperties = getProperties().simplified().replace(" ","").split(",",QString::SkipEmptyParts);
QRegExp rx(name,Qt::CaseInsensitive);
int idx = availableProperties.indexOf(rx)+1;
bool ret=false;
if (idx<=0)
return ret;
switch(idx) {
case kwKn: { //kn
if (inheritanceField_ & linKnMask)
ret = updateKn(c);
break;
}
case kwKs: { //ks
if (inheritanceField_ & linKsMask)
ret =updateKs(c);
break;
}
case kwFric: { //fric
if (inheritanceField_ & linFricMask)
updateFric(c);
break;
}
}
return ret;
}
void ContactModelLinearCBond::updateEffectiveStiffness(ContactModelMechanicalState *) {
DVect2 ret(kn_,ks_);
// correction if viscous damping active
if (dpProps_) {
DVect2 correct(1.0);
if (dpProps_->dp_nratio_)
correct.rx() = sqrt(1.0+dpProps_->dp_nratio_*dpProps_->dp_nratio_) - dpProps_->dp_nratio_;
if (dpProps_->dp_sratio_)
correct.ry() = sqrt(1.0+dpProps_->dp_sratio_*dpProps_->dp_sratio_) - dpProps_->dp_sratio_;
ret /= (correct*correct);
}
effectiveTranslationalStiffness_ = ret;
}
bool ContactModelLinearCBond::forceDisplacementLaw(ContactModelMechanicalState *state,const double ×tep) {
assert(state);
double overlap = rgap_ - state->gap_;
DVect trans = state->relativeTranslationalIncrement_;
double correction = 1.0;
if (state->activated()) {
if (cmEvents_[fActivated] >= 0) {
auto c = state->getContact();
std::vector<fish::Parameter> arg = { fish::Parameter(c->getIThing()) };
IFishCallList *fi = const_cast<IFishCallList*>(state->getProgram()->findInterface<IFishCallList>());
fi->setCMFishCallArguments(c,arg,cmEvents_[fActivated]);
}
if (lin_mode_ == 0 && trans.x()) {
correction = -1.0*overlap / trans.x();
if (correction < 0)
correction = 1.0;
}
}
#ifdef THREED
DVect norm(trans.x(),0.0,0.0);
#else
DVect norm(trans.x(),0.0);
#endif
DAVect ang = state->relativeAngularIncrement_;
DVect lin_F_old = lin_F_;
if (lin_mode_ == 0)
lin_F_.rx() = overlap * kn_;
else
lin_F_.rx() -= correction * norm.x() * kn_;
DVect u_s = trans;
u_s.rx() = 0.0;
DVect sforce = lin_F_ - u_s * ks_ * correction;
sforce.rx() = 0.0;
// Resolve failure (contact bonds and friction)
if (state->canFail_) {
// Resolve contact bond failure - done first so that this way, even if breaks, one can ensure a valid sliding state
if (cb_state_ == 3) { // bonded - Note: this means that isSliding is false!
if (lin_F_.x() <= -cb_tenF_) {
// Broke in tension
cb_state_ = 1;
if (cmEvents_[fBondBreak] >= 0) {
auto c = state->getContact();
std::vector<fish::Parameter> arg = { fish::Parameter(c->getIThing()),
fish::Parameter((qint64)cb_state_),
fish::Parameter(cb_tenF_) };
IFishCallList *fi = const_cast<IFishCallList*>(state->getProgram()->findInterface<IFishCallList>());
fi->setCMFishCallArguments(c,arg,cmEvents_[fBondBreak]);
}
} else if (sforce.mag() >= cb_shearF_) {
// Broke in shear
cb_state_ = 2;
if (cmEvents_[fBondBreak] >= 0) {
auto c = state->getContact();
std::vector<fish::Parameter> arg = { fish::Parameter(c->getIThing()),
fish::Parameter((qint64)cb_state_),
fish::Parameter(cb_shearF_) };
IFishCallList *fi = const_cast<IFishCallList*>(state->getProgram()->findInterface<IFishCallList>());
fi->setCMFishCallArguments(c,arg,cmEvents_[fBondBreak]);
}
}
}
// 2) Resolve sliding if no contact bond exists
if (cb_state_ < 3) {
// No contact bond - normal force is positive only
lin_F_.rx() = std::max(0.0,lin_F_.x());
// No contact bond - sliding can occur
double crit = lin_F_.x() * fric_;
double sfmag = sforce.mag();
if (sfmag > crit) {
double rat = crit / sfmag;
sforce *= rat;
if (!lin_S_ && cmEvents_[fSlipChange] >= 0) {
auto c = state->getContact();
std::vector<fish::Parameter> arg = { fish::Parameter(c->getIThing()),
fish::Parameter() };
IFishCallList *fi = const_cast<IFishCallList*>(state->getProgram()->findInterface<IFishCallList>());
fi->setCMFishCallArguments(c,arg,cmEvents_[fSlipChange]);
}
lin_S_ = true;
} else {
if (lin_S_) {
if (cmEvents_[fSlipChange] >= 0) {
auto c = state->getContact();
std::vector<fish::Parameter> arg = { fish::Parameter(c->getIThing()),
fish::Parameter((qint64)1) };
IFishCallList *fi = const_cast<IFishCallList*>(state->getProgram()->findInterface<IFishCallList>());
fi->setCMFishCallArguments(c,arg,cmEvents_[fSlipChange]);
}
lin_S_ = false;
}
}
}
}
sforce.rx() = lin_F_.x();
lin_F_ = sforce; // total force in linear contact model
// 3) Account for dashpot forces
if (dpProps_) {
dpProps_->dp_F_.fill(0.0);
double vcn(0.0), vcs(0.0);
setDampCoefficients(state->inertialMass_,&vcn,&vcs);
// First damp all components
dpProps_->dp_F_ = u_s * (-1.0* vcs) / timestep; // shear component
dpProps_->dp_F_ -= norm * vcn / timestep; // normal component
// Need to change behavior based on the dp_mode
if (cb_state_ !=3 && (dpProps_->dp_mode_ == 1 || dpProps_->dp_mode_ == 3)) { // limit the tensile if not bonded
if (dpProps_->dp_F_.x() + lin_F_.x() < 0)
dpProps_->dp_F_.rx() = - lin_F_.rx();
}
if (lin_S_ && dpProps_->dp_mode_ > 1) { // limit the shear if not sliding
double dfn = dpProps_->dp_F_.rx();
dpProps_->dp_F_.fill(0.0);
dpProps_->dp_F_.rx() = dfn;
}
}
// 5) Compute energies
if (state->trackEnergy_) {
assert(energies_);
energies_->estrain_ = 0.0;
if (kn_)
energies_->estrain_ = 0.5*lin_F_.x()*lin_F_.x()/kn_;
if (ks_) {
DVect s = lin_F_;
s.rx() = 0.0;
double smag2 = s.mag2();
energies_->estrain_ += 0.5*smag2 / ks_;
if (lin_S_) {
lin_F_old.rx() = 0.0;
DVect avg_F_s = (s + lin_F_old)*0.5;
DVect u_s_el = (s - lin_F_old) / ks_;
energies_->eslip_ -= std::min(0.0,(avg_F_s | (u_s + u_s_el)));
}
}
if (dpProps_) {
energies_->edashpot_ -= dpProps_->dp_F_ | trans;
}
}
assert(lin_F_ == lin_F_);
return checkActivity(state->gap_);
}
bool ContactModelLinearCBond::thermalCoupling(ContactModelMechanicalState*, ContactModelThermalState* ts, IContactThermal*, const double&) {
// Account for thermal expansion in incremental mode
if (lin_mode_ == 0 || ts->gapInc_ == 0.0) return false;
DVect finc(0.0);
finc.rx() = kn_ * ts->gapInc_;
lin_F_ -= finc;
return true;
}
void ContactModelLinearCBond::setForce(const DVect &v,IContact *c) {
lin_F(v);
if (v.x() > 0)
rgap_ = c->getGap() + v.x() / kn_;
}
void ContactModelLinearCBond::propagateStateInformation(IContactModelMechanical* old,const CAxes &oldSystem,const CAxes &newSystem) {
// Only do something if the contact model is of the same type
if (old->getContactModel()->getName().compare("linearcbond",Qt::CaseInsensitive) == 0 && !isBonded()) {
ContactModelLinearCBond *oldCm = (ContactModelLinearCBond *)old;
#ifdef THREED
// Need to rotate just the shear component from oldSystem to newSystem
// Step 1 - rotate oldSystem so that the normal is the same as the normal of newSystem
DVect axis = oldSystem.e1() & newSystem.e1();
double c, ang, s;
DVect re2;
if (!checktol(axis.abs().maxComp(),0.0,1.0,1000)) {
axis = axis.unit();
c = oldSystem.e1()|newSystem.e1();
if (c > 0)
c = std::min(c,1.0);
else
c = std::max(c,-1.0);
ang = acos(c);
s = sin(ang);
double t = 1. - c;
DMatrix<3,3> rm;
rm.get(0,0) = t*axis.x()*axis.x() + c;
rm.get(0,1) = t*axis.x()*axis.y() - axis.z()*s;
rm.get(0,2) = t*axis.x()*axis.z() + axis.y()*s;
rm.get(1,0) = t*axis.x()*axis.y() + axis.z()*s;
rm.get(1,1) = t*axis.y()*axis.y() + c;
rm.get(1,2) = t*axis.y()*axis.z() - axis.x()*s;
rm.get(2,0) = t*axis.x()*axis.z() - axis.y()*s;
rm.get(2,1) = t*axis.y()*axis.z() + axis.x()*s;
rm.get(2,2) = t*axis.z()*axis.z() + c;
re2 = rm*oldSystem.e2();
}
else
re2 = oldSystem.e2();
// Step 2 - get the angle between the oldSystem rotated shear and newSystem shear
axis = re2 & newSystem.e2();
DVect2 tpf;
DMatrix<2,2> m;
if (!checktol(axis.abs().maxComp(),0.0,1.0,1000)) {
axis = axis.unit();
c = re2|newSystem.e2();
if (c > 0)
c = std::min(c,1.0);
else
c = std::max(c,-1.0);
ang = acos(c);
if (!checktol(axis.x(),newSystem.e1().x(),1.0,100))
ang *= -1;
s = sin(ang);
m.get(0,0) = c;
m.get(1,0) = s;
m.get(0,1) = -m.get(1,0);
m.get(1,1) = m.get(0,0);
tpf = m*DVect2(oldCm->lin_F_.y(),oldCm->lin_F_.z());
} else {
m.get(0,0) = 1.;
m.get(0,1) = 0.;
m.get(1,0) = 0.;
m.get(1,1) = 1.;
tpf = DVect2(oldCm->lin_F_.y(),oldCm->lin_F_.z());
}
DVect pforce = DVect(0,tpf.x(),tpf.y());
#else
oldSystem;
newSystem;
DVect pforce = DVect(0,oldCm->lin_F_.y());
#endif
for (int i=1; i<dim; ++i)
lin_F_.rdof(i) += pforce.dof(i);
if (lin_mode_ && oldCm->lin_mode_)
lin_F_.rx() = oldCm->lin_F_.x();
oldCm->lin_F_ = DVect(0.0);
if (dpProps_ && oldCm->dpProps_) {
#ifdef THREED
tpf = m*DVect2(oldCm->dpProps_->dp_F_.y(),oldCm->dpProps_->dp_F_.z());
pforce = DVect(oldCm->dpProps_->dp_F_.x(),tpf.x(),tpf.y());
#else
pforce = oldCm->dpProps_->dp_F_;
#endif
dpProps_->dp_F_ += pforce;
oldCm->dpProps_->dp_F_ = DVect(0.0);
}
if(oldCm->getEnergyActivated()) {
activateEnergy();
energies_->estrain_ = oldCm->energies_->estrain_;
energies_->eslip_ = oldCm->energies_->eslip_;
energies_->edashpot_ = oldCm->energies_->edashpot_;
oldCm->energies_->estrain_ = 0.0;
oldCm->energies_->edashpot_ = 0.0;
oldCm->energies_->eslip_ = 0.0;
}
rgap_ = oldCm->rgap_;
}
assert(lin_F_ == lin_F_);
}
void ContactModelLinearCBond::setNonForcePropsFrom(IContactModel *old) {
// Only do something if the contact model is of the same type
if (old->getName().compare("linearcbond",Qt::CaseInsensitive) == 0 && !isBonded()) {
ContactModelLinearCBond *oldCm = (ContactModelLinearCBond *)old;
kn_ = oldCm->kn_;
ks_ = oldCm->ks_;
fric_ = oldCm->fric_;
lin_mode_ = oldCm->lin_mode_;
rgap_ = oldCm->rgap_;
userArea_ = oldCm->userArea_;
if (oldCm->dpProps_) {
if (!dpProps_)
dpProps_ = NEWC(dpProps());
dpProps_->dp_nratio_ = oldCm->dpProps_->dp_nratio_;
dpProps_->dp_sratio_ = oldCm->dpProps_->dp_sratio_;
dpProps_->dp_mode_ = oldCm->dpProps_->dp_mode_;
}
}
}
DVect ContactModelLinearCBond::getForce(const IContactMechanical *) const {
DVect ret(lin_F_);
if (dpProps_)
ret += dpProps_->dp_F_;
return ret;
}
DAVect ContactModelLinearCBond::getMomentOn1(const IContactMechanical *c) const {
DVect force = getForce(c);
DAVect ret(0.0);
c->updateResultingTorqueOn1Local(force,&ret);
return ret;
}
DAVect ContactModelLinearCBond::getMomentOn2(const IContactMechanical *c) const {
DVect force = getForce(c);
DAVect ret(0.0);
c->updateResultingTorqueOn2Local(force,&ret);
return ret;
}
void ContactModelLinearCBond::setDampCoefficients(const double &mass,double *vcn,double *vcs) {
*vcn = dpProps_->dp_nratio_ * 2.0 * sqrt(mass*(kn_));
*vcs = dpProps_->dp_sratio_ * 2.0 * sqrt(mass*(ks_));
}
} // namespace itascaxd
// EoF
|
Was this helpful? ... | 3DEC © 2019, Itasca | Updated: Feb 25, 2024 |