Spring Network Model Implementation
See this page for the documentation of this contact model.
contactmodelrbsn.h
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 | #pragma once
// contactmodelrbsn.h
#include "contactmodel/src/contactmodelmechanical.h"
#ifdef RBSN_LIB
# define RBSN_EXPORT EXPORT_TAG
#elif defined(NO_MODEL_IMPORT)
# define RBSN_EXPORT
#else
# define RBSN_EXPORT IMPORT_TAG
#endif
namespace cmodelsxd {
using namespace itasca;
class ContactModelRBSN : public ContactModelMechanical {
public:
// Constructor: Set default values for contact model properties.
RBSN_EXPORT ContactModelRBSN();
// Destructor, called when contact is deleted: free allocated memory, etc.
RBSN_EXPORT virtual ~ContactModelRBSN();
// Contact model name (used as keyword for commands and FISH).
virtual QString getName() const { return "springnetwork"; }
// The index provides a quick way to determine the type of contact model.
// Each type of contact model in PFC must have a unique index; this is assigned
// by PFC when the contact model is loaded. This index should be set to -1
virtual void setIndex(int i) { index_=i;}
virtual int getIndex() const {return index_;}
// Contact model version number (e.g., MyModel05_1). The version number can be
// accessed during the save-restore operation (within the archive method,
// testing {stream.getRestoreVersion() == getMinorVersion()} to allow for
// future modifications to the contact model data structure.
virtual uint getMinorVersion() const;
// Copy the state information to a newly created contact model.
// Provide access to state information, for use by copy method.
virtual void copy(const ContactModel *c) override;
// Provide save-restore capability for the state information.
virtual void archive(ArchiveStream &);
// Enumerator for the properties.
enum PropertyKeys {
kwKn=1
, kwKs
, kwKrot
, kwFric
, kwBMul
, kwTMul
, kwSNMode
, kwSNF
, kwSNM
, kwSNS
, kwSNBS
, kwSNTS
, kwSNRMul
, kwSNRadius
, kwEmod
, kwKRatio
, kwDpNRatio
, kwDpSRatio
, kwDpMode
, kwDpF
, kwSNState
, kwSNTStr
, kwSNSStr
, kwSNCoh
, kwSNFa
, kwSNMCF
, kwSNSig
, kwSNTau
, kwSNArea
, kwUserArea
, kwRGap
, kwPForce
, kwPois
, kwPoisDiag
, kwSnCohRes
, kwSnDil
, kwSnDilZ
, kwSnNormDisp
, kwSnShearDisp
, kwSnCohDc
, kwSnHeal
, kwSnTenDc
, kwTenTable
, kwCohTable
, kwTablePos
, kwPorP
, kwStressNorm
};
// Contact model property names in a comma separated list. The order corresponds with
// the order of the PropertyKeys enumerator above. One can visualize any of these
// properties in PFC automatically.
virtual QString getProperties() const {
return "kn"
",ks"
",krot"
",fric"
",sn_bmul"
",sn_tmul"
",sn_mode"
",sn_force"
",sn_moment"
",sn_slip"
",sn_slipb"
",sn_slipt"
",sn_rmul"
",sn_radius"
",emod"
",kratio"
",dp_nratio"
",dp_sratio"
",dp_mode"
",dp_force"
",sn_state"
",sn_ten"
",sn_shear"
",sn_coh"
",sn_fa"
",sn_mcf"
",sn_sigma"
",sn_tau"
",sn_area"
",user_area"
",rgap"
",sn_pois_force"
",sn_pois"
",sn_non_diag"
",sn_cohres"
",sn_dil"
",sn_dilzero"
",sn_ndisp"
",sn_sdisp"
",sn_cohdc"
",sn_heal"
",sn_tendc"
",sn_tentab"
",sn_cohtab"
",sn_tabpos"
",sn_porp"
",sn_esigma"
;
}
// Enumerator for the energies.
enum EnergyKeys {
kwEStrain=1
, kwESlip
, kwEDashpot
};
// Contact model energy names in a comma separated list. The order corresponds with
// the order of the EnergyKeys enumerator above.
virtual QString getEnergies() const {
return "energy-strain"
",energy-slip"
",energy-dashpot";
}
// Returns the value of the energy (base 1 - getEnergy(1) returns the estrain energy).
virtual double getEnergy(uint i) const;
// Returns whether or not each energy is accumulated (base 1 - getEnergyAccumulate(1)
// returns wther or not the estrain energy is accumulated which is false).
virtual bool getEnergyAccumulate(uint i) const;
// Set an energy value (base 1 - setEnergy(1) sets the estrain energy).
virtual void setEnergy(uint i,const double &d); // Base 1
// Activate the energy. This is only called if the energy tracking is enabled.
virtual void activateEnergy() { if (energies_) return; energies_ = NEWC(Energies());}
// Returns whether or not the energy tracking has been enabled for this contact.
virtual bool getEnergyActivated() const {return (energies_ != 0);}
// Enumerator for contact model related FISH callback events.
enum FishCallEvents {
fActivated=0
,fSlipChange
,fBondBreak
};
// Contact model FISH callback event names in a comma separated list. The order corresponds with
// the order of the FishCallEvents enumerator above.
virtual QString getFishCallEvents() const {
return
"contact_activated"
",slip_change"
",bond_break";
}
// Return the specified contact model property.
virtual QVariant getProperty(uint i,const IContact *) const;
// The return value denotes whether or not the property corresponds to the global
// or local coordinate system (TRUE: global system, FALSE: local system). The
// local system is the contact-plane system (nst) defined as follows.
// If a vector V is expressed in the local system as (Vn, Vs, Vt), then V is
// expressed in the global system as {Vn*nc + Vs*sc + Vt*tc} where where nc, sc
// and tc are unit vectors in directions of the nst axes.
// This is used when rendering contact model properties that are vectors.
virtual bool getPropertyGlobal(uint i) const;
// Set the specified contact model property, ensuring that it is of the correct type
// and within the correct range --- if not, then throw an exception.
// The return value denotes whether or not the update has affected the timestep
// computation (by having modified the translational or rotational tangent stiffnesses).
// If true is returned, then the timestep will be recomputed.
virtual bool setProperty(uint i,const QVariant &v,IContact *);
// The return value denotes whether or not the property is read-only
// (TRUE: read-only, FALSE: read-write).
virtual bool getPropertyReadOnly(uint i) const;
// The return value denotes whether or not the property is inheritable
// (TRUE: inheritable, FALSE: not inheritable). Inheritance is provided by
// the endPropertyUpdated method.
virtual bool supportsInheritance(uint i) const;
// Return whether or not inheritance is enabled for the specified property.
virtual bool getInheritance(uint i) const { assert(i<32); quint32 mask = to<quint32>(1 << i); return (inheritanceField_ & mask) ? true : false; }
// Set the inheritance flag for the specified property.
virtual void setInheritance(uint i,bool b) { assert(i<32); quint32 mask = to<quint32>(1 << i); if (b) inheritanceField_ |= mask; else inheritanceField_ &= ~mask; }
// Enumerator for contact model methods.
enum MethodKeys { kwAssignStiffness=1, kwStiffness, kwBond, kwUnbond, kwArea, kwResetDisp};
// Contact model methoid names in a comma separated list. The order corresponds with
// the order of the MethodKeys enumerator above.
virtual QString getMethods() const { return "assign-stiffness,compute-stiffness,bond,unbond,area,reset-disp";}
// Return a comma seprated list of the contact model method arguments (base 1).
virtual QString getMethodArguments(uint i) const;
// Set contact model method arguments (base 1).
// The return value denotes whether or not the update has affected the timestep
// computation (by having modified the translational or rotational tangent stiffnesses).
// If true is returned, then the timestep will be recomputed.
virtual bool setMethod(uint i,const QVector<QVariant> &vl,IContact *con=0);
// Prepare for entry into ForceDispLaw. The validate function is called when:
// (1) the contact is created, (2) a property of the contact that returns a true via
// the setProperty method has been modified and (3) when a set of cycles is executed
// via the {cycle N} command.
// Return value indicates contact activity (TRUE: active, FALSE: inactive).
virtual bool validate(ContactModelMechanicalState *state,const double ×tep);
// The endPropertyUpdated method is called whenever a surface property (with a name
// that matches an inheritable contact model property name) of one of the contacting
// pieces is modified. This allows the contact model to update its associated
// properties. The return value denotes whether or not the update has affected
// the time step computation (by having modified the translational or rotational
// tangent stiffnesses). If true is returned, then the time step will be recomputed.
virtual bool endPropertyUpdated(const QString &name,const IContactMechanical *c);
// The forceDisplacementLaw function is called during each cycle. Given the relative
// motion of the two contacting pieces (via
// state->relativeTranslationalIncrement_ (Ddn, Ddss, Ddst)
// state->relativeAngularIncrement_ (Dtt, Dtbs, Dtbt)
// Ddn : relative normal-displacement increment, Ddn > 0 is opening
// Ddss : relative shear-displacement increment (s-axis component)
// Ddst : relative shear-displacement increment (t-axis component)
// Dtt : relative twist-rotation increment
// Dtbs : relative bend-rotation increment (s-axis component)
// Dtbt : relative bend-rotation increment (t-axis component)
// The relative displacement and rotation increments:
// Dd = Ddn*nc + Ddss*sc + Ddst*tc
// Dt = Dtt*nc + Dtbs*sc + Dtbt*tc
// where nc, sc and tc are unit vectors in direc. of the nst axes, respectively.
// [see {Table 1: Contact State Variables} in PFC Model Components:
// Contacts and Contact Models: Contact Resolution]
// ) and the contact properties, this function must update the contact force and
// moment.
// The force_ is acting on piece 2, and is expressed in the local coordinate system
// (defined in getPropertyGlobal) such that the first component positive denotes
// compression. If we define the moment acting on piece 2 by Mc, and Mc is expressed
// in the local coordinate system (defined in getPropertyGlobal), then we must use the getMechanicalContact()->updateResultingTorquesLocal(...) method to
// get the total moment.
// The return value indicates the contact activity status (TRUE: active, FALSE:
// inactive) during the next cycle.
// Additional information:
// * If state->activated() is true, then the contact has just become active (it was
// inactive during the previous time step).
// * Fully elastic behavior is enforced during the SOLVE ELASTIC command by having
// the forceDispLaw handle the case of {state->canFail_ == true}.
virtual bool forceDisplacementLaw(ContactModelMechanicalState *state,const double ×tep);
virtual bool thermalCoupling(ContactModelMechanicalState*, ContactModelThermalState* ts, IContactThermal*, const double&);
// The getEffectiveXStiffness functions return the translational and rotational
// tangent stiffnesses used to compute a stable time step. When a contact is sliding,
// the translational tangent shear stiffness is zero (but this stiffness reduction
// is typically ignored when computing a stable time step). If the contact model
// includes a dashpot, then the translational stiffnesses must be increased (see
// Potyondy (2009)).
// [Potyondy, D. 'Stiffness Matrix at a Contact Between Two Clumps,' Itasca
// Consulting Group, Inc., Minneapolis, MN, Technical Memorandum ICG6863-L,
// December 7, 2009.]
virtual DVect2 getEffectiveTranslationalStiffness() const { return effectiveTranslationalStiffness_; }
virtual DAVect getEffectiveRotationalStiffness() const { return effectiveRotationalStiffness_;}
// Return a new instance of the contact model. This is used in the CMAT
// when a new contact is created.
virtual ContactModelRBSN *clone() const override { return NEWC(ContactModelRBSN()); }
// The getActivityDistance function is called by the contact-resolution logic when
// the CMAT is modified. Return value is the activity distance used by the
// checkActivity function.
virtual double getActivityDistance() const {return rgap_;}
// The isOKToDelete function is called by the contact-resolution logic when...
// Return value indicates whether or not the contact may be deleted.
// If TRUE, then the contact may be deleted when it is inactive.
// If FALSE, then the contact may not be deleted (under any condition).
virtual bool isOKToDelete() const { return !isBonded(); }
// Zero the forces and moments stored in the contact model. This function is called
// when the contact becomes inactive.
virtual void resetForcesAndMoments() {
sn_F_ = DVect(0.0);
fictForce_ = DVect(0.0);
sn_M_ = DAVect(0.0);
dp_F(DVect(0.0));
if (energies_) {
energies_->estrain_ = 0.0;
}
}
virtual void setForce(const DVect &v,IContact *c);
virtual void setArea(const double &d) { userArea_ = d; }
virtual double getArea() const { return userArea_; }
// The checkActivity function is called by the contact-resolution logic when...
// Return value indicates contact activity (TRUE: active, FALSE: inactive).
virtual bool checkActivity(const double &gap) { return gap <= rgap_ || isBonded();}
// Returns the sliding state (FALSE is returned if not implemented).
virtual bool isSliding() const { return sn_S_; }
// Returns the bonding state (FALSE is returned if not implemented).
virtual bool isBonded() const { return sn_state_ >= 3; }
virtual void unbond() { sn_state_ = 0; }
// Both of these methods are called only for contacts with facets where the wall
// resolution scheme is set the full. In such cases one might wish to propagate
// contact state information (e.g., shear force) from one active contact to another.
// See the Faceted Wall section in the documentation.
virtual void propagateStateInformation(IContactModelMechanical* oldCm,const CAxes &oldSystem=CAxes(),const CAxes &newSystem=CAxes());
virtual void setNonForcePropsFrom(IContactModel *oldCM);
/// Return the total force that the contact model holds.
virtual DVect getForce(const IContactMechanical *) const;
/// Return the total moment on 1 that the contact model holds
virtual DAVect getMomentOn1(const IContactMechanical *) const;
/// Return the total moment on 1 that the contact model holds
virtual DAVect getMomentOn2(const IContactMechanical *) const;
// Methods to get and set properties.
double sn_Ten() const { return tenTable_[0].x(); }
void sn_Ten(const double &d) { tenTable_[0].rx() = d; }
double sn_Coh() const { return cohTable_[0].x(); }
void sn_Coh(const double &d) { cohTable_[0].rx() = d; }
void sn_MCF(const double &d) { sn_mcf_=d;}
double sn_cohdc() const {return cohTable_.back().y(); }
double sn_tendc() const {return tenTable_.back().y(); }
bool hasDamping() const {return dpProps_ ? true : false;}
double dp_nratio() const {return (hasDamping() ? (dpProps_->dp_nratio_) : 0.0);}
void dp_nratio(const double &d) { if(!hasDamping()) return; dpProps_->dp_nratio_=d;}
double dp_sratio() const {return hasDamping() ? dpProps_->dp_sratio_: 0.0;}
void dp_sratio(const double &d) { if(!hasDamping()) return; dpProps_->dp_sratio_=d;}
int dp_mode() const {return hasDamping() ? dpProps_->dp_mode_: -1;}
void dp_mode(int i) { if(!hasDamping()) return; dpProps_->dp_mode_=i;}
DVect dp_F() const {return hasDamping() ? dpProps_->dp_F_: DVect(0.0);}
void dp_F(const DVect &f) { if(!hasDamping()) return; dpProps_->dp_F_=f;}
bool hasEnergies() const {return energies_ ? true:false;}
double estrain() const {return hasEnergies() ? energies_->estrain_: 0.0;}
void estrain(const double &d) { if(!hasEnergies()) return; energies_->estrain_=d;}
double eslip() const {return hasEnergies() ? energies_->eslip_: 0.0;}
void eslip(const double &d) { if(!hasEnergies()) return; energies_->eslip_=d;}
double edashpot() const {return hasEnergies() ? energies_->edashpot_: 0.0;}
void edashpot(const double &d) { if(!hasEnergies()) return; energies_->edashpot_=d;}
uint inheritanceField() const {return inheritanceField_;}
void inheritanceField(uint i) {inheritanceField_ = i;}
const DVect2 & effectiveTranslationalStiffness() const {return effectiveTranslationalStiffness_;}
void effectiveTranslationalStiffness(const DVect2 &v ) {effectiveTranslationalStiffness_=v;}
const DAVect & effectiveRotationalStiffness() const {return effectiveRotationalStiffness_;}
void effectiveRotationalStiffness(const DAVect &v ) {effectiveRotationalStiffness_=v;}
private:
// Index - used internally by PFC. Should be set to -1 in the cpp file.
static int index_;
bool FDLawBonded(ContactModelMechanicalState *state, const double ×tep);
bool FDLawUnBonded(ContactModelMechanicalState *state, const double ×tep);
// Structure to compute stiffness
struct StiffData {
DVect2 trans_ = DVect2(0.0);
DAVect ang_ = DAVect(0.0);
double reff_ = 0.0;
};
// Structure to store the energies.
struct Energies {
double estrain_ = 0.0; // elastic energy
double eslip_ = 0.0; // work dissipated by friction
double edashpot_ = 0.0; // work dissipated by dashpots
};
// Structure to store dashpot quantities.
struct dpProps {
double dp_nratio_ = 0.0; // normal viscous critical damping ratio
double dp_sratio_ = 0.0; // shear viscous critical damping ratio
int dp_mode_ = 0; // for viscous mode (0-4) 0 = dashpots, 1 = tensile limit, 2 = shear limit, 3 = limit both
DVect dp_F_ = DVect(0.0); // Force in the dashpots
};
bool updateKn(const IContactMechanical *con);
bool updateKs(const IContactMechanical *con);
bool updateFric(const IContactMechanical *con);
StiffData computeStiffData(ContactModelMechanicalState *state) const;
DVect3 computeGeomData(const IContactMechanical *c) const;
DVect2 SMax(const IContactMechanical *con) const; // Maximum stress (tensile,shear) at bond periphery
double shearStrength(const double &pbArea) const; // Bond shear strength
double strainEnergy(double kn, double ks, double kb, double kt) const;
void updateStiffness(ContactModelMechanicalState *state);
// Contact model inheritance fields.
quint32 inheritanceField_;
// Effective translational stiffness.
DVect2 effectiveTranslationalStiffness_ = DVect2(0.0);
DAVect effectiveRotationalStiffness_ = DAVect(0.0); // (Twisting,Bending,Bending) Rotational stiffness (twisting always 0)
// linear model properties
DVect fictForce_ = DVect(0.0);// Ficticous force to be added
DVect sn_F_ = DVect(0.0); // Force carried in the model
DVect2 sn_sdisp_ = DVect2(0.0); // Accumulated total shear displacement
// The x component holds the current slip
DAVect sn_M_ = DAVect(0.0); // moment (bending + twisting in 3D)
DAVect kRot_ = DAVect(0.0); // Translational degrees of freedom
double kTran_ = 0.0; // Translational degrees of freedom
double kRatio_ = 1.0; // Ratio of normal to shear stiffness
double E_ = 0.0; // Young's modulus
double poisson_ = 0.0; // Poisson ratio
double fric_ = 0.0; // Coulomb friction coefficient
double sn_bmul_ = 1.0; // Bending friction multiplier
double sn_tmul_ = 1.0; // Twisting friction multiplier
double sn_rmul_ = 1.0; // Radius multiplier
double userArea_ = 0.0; // Area as specified by the user
double rgap_ = 0.0; // Reference gap
double sn_fa_ = 0.0; // friction angle (stored as tan(dDegrad*fa))
double sn_mcf_ = 1.0; // moment contribution factor
double sn_dil_ = 0.0; // Dilation (stored as tan(dDegrad*dil))
double sn_dilzero_ = 0.0; // Dilation zero
double transTen_ = 0.0; // Force for transition from tensile to compression
double sn_elong_ = 0.0; // Elongation (or normal displacement since softening)
double sn_ndisp_ = 0.0; // Accumulated normal displacement
double sn_cohres_ = 0.0; // Residual cohesion
double sn_por_ = 0.0; // Pore Pressure
uint sn_mode_ = 0; // specifies absolute (0) or incremental (1) behavior for the the normal force
uint sn_state_ = 0; // bond mode - 0 (NBNF), 1 (NBFT), 2 (NBFS), 3 (B)
int sn_tabPos_ = 0; // Position in the table for query
bool poisOffDiag_ = false; // Add the off diagonal terms
bool sn_S_ = false; // The current slip state
bool sn_BS_ = false; // The bending slip state
bool sn_TS_ = false; // The twisting slip state
bool forceSet_ = false; // About setting the force
bool sn_heal_ = false; // Healing behavior
std::vector<DVect2> tenTable_ = { DVect2(0) };
std::vector<DVect2> cohTable_ = { DVect2(0) };
dpProps * dpProps_ = nullptr; // The viscous properties
Energies * energies_ = nullptr; // The energies
};
} // namespace cmodelsxd
// EoF
|
contactmodelrbsn.cpp
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 | // contactmodelrbsn.cpp
#include "contactmodelrbsn.h"
#include "module/interface/icontactmechanical.h"
#include "module/interface/icontact.h"
#include "module/interface/ipiece.h"
#include "module/interface/ibody.h"
#include "module/interface/ifishcalllist.h"
#include "utility/src/tptr.h"
#include "shared/src/mathutil.h"
#include "kernel/interface/iprogram.h"
#include "module/interface/icontactthermal.h"
#include "contactmodel/src/contactmodelthermal.h"
#include "../version.txt"
#include "fish/src/parameter.h"
#ifdef RBSN_LIB
int __stdcall DllMain(void *,unsigned, void *) {
return 1;
}
extern "C" EXPORT_TAG const char *getName() {
#if DIM==3
return "contactmodelmechanical3drbsn";
#else
return "contactmodelmechanical2drbsn";
#endif
}
extern "C" EXPORT_TAG unsigned getMajorVersion() {
return MAJOR_VERSION;
}
extern "C" EXPORT_TAG unsigned getMinorVersion() {
return MINOR_VERSION;
}
extern "C" EXPORT_TAG void *createInstance() {
cmodelsxd::ContactModelRBSN *m = NEWC(cmodelsxd::ContactModelRBSN());
return (void *)m;
}
#endif
namespace cmodelsxd {
static const quint32 KnMask = 0x00000002; // Base 1!
static const quint32 KsMask = 0x00000004;
static const quint32 FricMask = 0x00000008;
using namespace itasca;
int ContactModelRBSN::index_ = -1;
UInt ContactModelRBSN::getMinorVersion() const { return MINOR_VERSION; }
ContactModelRBSN::ContactModelRBSN() : inheritanceField_(KnMask|KsMask|FricMask) {
}
ContactModelRBSN::~ContactModelRBSN() {
// Make sure to clean up after yourself!
if (dpProps_)
delete dpProps_;
if (energies_)
delete energies_;
}
void ContactModelRBSN::archive(ArchiveStream &stream) {
if (stream.getRestoreVersion() > 4) {
// New version
stream & fictForce_;
stream & sn_F_;
stream & sn_sdisp_;
stream & sn_M_;
stream & kRot_;
stream & kTran_;
stream & kRatio_;
stream & E_;
stream & poisson_;
stream & fric_;
stream & sn_bmul_;
stream & sn_tmul_;
stream & sn_rmul_;
stream & userArea_;
stream & rgap_;
stream & sn_fa_;
stream & sn_mcf_;
stream & sn_dil_;
stream & sn_dilzero_;
stream & transTen_;
stream & sn_elong_;
stream & sn_ndisp_;
stream & sn_mode_;
stream & sn_state_;
stream & poisOffDiag_;
stream & sn_S_;
stream & sn_BS_;
stream & sn_TS_;
stream & forceSet_;
stream & sn_heal_;
stream & tenTable_;
stream & cohTable_;
stream & inheritanceField_;
stream & effectiveTranslationalStiffness_;
stream & effectiveRotationalStiffness_;
if (stream.getArchiveState()==ArchiveStream::Save) {
bool b = false;
if (dpProps_) {
b = true;
stream & b;
stream & dpProps_->dp_nratio_;
stream & dpProps_->dp_sratio_;
stream & dpProps_->dp_mode_;
stream & dpProps_->dp_F_;
}
else
stream & b;
b = false;
if (energies_) {
b = true;
stream & b;
stream & energies_->estrain_;
stream & energies_->eslip_;
stream & energies_->edashpot_;
}
else
stream & b;
} else {
bool b(false);
stream & b;
if (b) {
if (!dpProps_)
dpProps_ = NEWC(dpProps());
stream & dpProps_->dp_nratio_;
stream & dpProps_->dp_sratio_;
stream & dpProps_->dp_mode_;
stream & dpProps_->dp_F_;
}
stream & b;
if (b) {
if (!energies_)
energies_ = NEWC(Energies());
stream & energies_->estrain_;
stream & energies_->eslip_;
stream & energies_->edashpot_;
}
}
if (stream.getArchiveState() == ArchiveStream::Save || stream.getRestoreVersion() > 5) {
stream & sn_tabPos_;
stream & sn_cohres_;
}
if (stream.getArchiveState() == ArchiveStream::Save || stream.getRestoreVersion() > 6)
stream & sn_por_;
} else {
// Backward compatibility
stream & kTran_;
stream & E_;
stream & kRot_;
stream & fictForce_;
stream & poisson_;
stream & fric_;
stream & sn_mode_;
stream & sn_F_;
stream & sn_M_;
stream & sn_S_;
stream & sn_BS_;
stream & sn_TS_;
stream & sn_rmul_;
bool b(false);
stream & b;
if (b) {
if (!dpProps_)
dpProps_ = NEWC(dpProps());
stream & dpProps_->dp_nratio_;
stream & dpProps_->dp_sratio_;
stream & dpProps_->dp_mode_;
stream & dpProps_->dp_F_;
}
stream & b;
if (b) {
if (!energies_)
energies_ = NEWC(Energies());
stream & energies_->estrain_;
stream & energies_->eslip_;
stream & energies_->edashpot_;
}
stream & b;
if (b) {
int vi = 0;
stream & vi;
sn_state_ = abs(vi);
double val = 0.0;
stream & val;
tenTable_[0].rx() = val;
val = 0.0;
stream & val;
cohTable_[0].rx() = val;
stream & sn_fa_;
stream & sn_mcf_;
stream & val;
stream & val;
stream & val;
stream & val;
Quat q;
stream & q;
stream & val;
stream & val;
}
stream & inheritanceField_;
stream & effectiveTranslationalStiffness_;
stream & effectiveRotationalStiffness_;
stream & sn_bmul_;
stream & sn_tmul_;
stream & userArea_;
stream & rgap_;
if (stream.getRestoreVersion() > 1)
stream & kRatio_;
if (stream.getRestoreVersion() > 2) {
uint v;
stream & v;
poisOffDiag_ = v == 0 ? false : true;
}
if (stream.getArchiveState() == ArchiveStream::Save || stream.getRestoreVersion() > 3)
stream & forceSet_;
}
}
void ContactModelRBSN::copy(const ContactModel *cm) {
// Copy all of the contact model properties. Used in the CMAT
// when a new contact is created.
ContactModelMechanical::copy(cm);
const ContactModelRBSN *in = dynamic_cast<const ContactModelRBSN*>(cm);
if (!in) throw std::runtime_error("Internal error: contact model dynamic cast failed.");
fictForce_ = in->fictForce_;
sn_F_ = in->sn_F_;
sn_sdisp_ = in->sn_sdisp_;
sn_M_ = in->sn_M_;
kRot_ = in->kRot_;
kTran_ = in->kTran_;
kRatio_ = in->kRatio_;
E_ = in->E_;
poisson_ = in->poisson_;
fric_ = in->fric_;
sn_bmul_ = in->sn_bmul_;
sn_tmul_ = in->sn_tmul_;
sn_rmul_ = in->sn_rmul_;
userArea_ = in->userArea_;
rgap_ = in->rgap_;
sn_fa_ = in->sn_fa_;
sn_mcf_ = in->sn_mcf_;
sn_dil_ = in->sn_dil_;
sn_dilzero_ = in->sn_dilzero_;
transTen_ = in->transTen_;
sn_elong_ = in->sn_elong_;
sn_ndisp_ = in->sn_ndisp_;
sn_mode_ = in->sn_mode_;
sn_state_ = in->sn_state_;
poisOffDiag_ = in->poisOffDiag_;
sn_S_ = in->sn_S_;
sn_BS_ = in->sn_BS_;
sn_TS_ = in->sn_TS_;
forceSet_ = in->forceSet_;
sn_heal_ = in->sn_heal_;
tenTable_ = in->tenTable_;
cohTable_ = in->cohTable_;
sn_por_ = in->sn_por_;
if (in->hasDamping()) {
if (!dpProps_)
dpProps_ = NEWC(dpProps());
dp_nratio(in->dp_nratio());
dp_sratio(in->dp_sratio());
dp_mode(in->dp_mode());
dp_F(in->dp_F());
}
if (in->hasEnergies()) {
if (!energies_)
energies_ = NEWC(Energies());
estrain(in->estrain());
eslip(in->eslip());
edashpot(in->edashpot());
}
inheritanceField(in->inheritanceField());
effectiveTranslationalStiffness(in->effectiveTranslationalStiffness());
effectiveRotationalStiffness(in->effectiveRotationalStiffness());
}
QVariant ContactModelRBSN::getProperty(uint i,const IContact *con) const {
// Return the property. The IContact pointer is provided so that
// more complicated properties, depending on contact characteristics,
// can be calcualted.
QVariant var;
switch (i) {
case kwKn: return kTran_;
case kwKs: return kTran_ / kRatio_;
case kwKrot: var.setValue(kRot_); return var;
case kwFric: return fric_;
case kwBMul: return sn_bmul_;
case kwTMul: return sn_tmul_;
case kwSNMode: return sn_mode_;
case kwSNF: var.setValue(sn_F_); return var;
case kwSNM: var.setValue(sn_M_); return var;
case kwSNS: return sn_S_;
case kwSNBS: return sn_BS_;
case kwSNTS: return sn_TS_;
case kwPoisDiag: return poisOffDiag_ == false ? 0 : 1;
case kwSNRMul: return sn_rmul_;
case kwSNRadius: {
const IContactMechanical *c(convert_getcast<IContactMechanical>(con));
if (!c) return 0.0;
double Cmax1 = c->getEnd1Curvature().y();
double Cmax2 = c->getEnd2Curvature().y();
if (!userArea_)
return sn_rmul_ * 1.0 / std::max(Cmax1, Cmax2);
else {
#ifdef THREED
double rad = std::sqrt(userArea_ / dPi);
#else
double rad = userArea_ / 2.0;
#endif
return rad;
}
}
case kwEmod: return E_;
case kwKRatio: return 1.0;
case kwDpNRatio: return dpProps_ ? dpProps_->dp_nratio_ : 0;
case kwDpSRatio: return dpProps_ ? dpProps_->dp_sratio_ : 0;
case kwDpMode: return dpProps_ ? dpProps_->dp_mode_ : 0;
case kwDpF: {
dpProps_ ? var.setValue(dpProps_->dp_F_) : var.setValue(DVect(0.0));
return var;
}
case kwSNState: return sn_state_;
case kwSNTStr: return sn_Ten();
case kwSNSStr: {
const IContactMechanical *c(convert_getcast<IContactMechanical>(con));
if (!c) return 0.0;
double area = computeGeomData(c).x();
return shearStrength(area);
}
case kwSNCoh: return cohTable_[0].x();
case kwSNFa: return std::atan(sn_fa_)/dDegrad;
case kwSNMCF: return sn_mcf_;
case kwSNSig: {
const IContactMechanical *c(convert_getcast<IContactMechanical>(con));
if (!c) return 0.0;
return SMax(c).x();
}
case kwSNTau: {
const IContactMechanical *c(convert_getcast<IContactMechanical>(con));
if (!c) return 0.0;
return SMax(c).y();
}
case kwSNArea: {
if (userArea_) return userArea_;
const IContactMechanical *c(convert_getcast<IContactMechanical>(con));
if (!c)
return 0.0;
return computeGeomData(c).x();
}
case kwUserArea:
return userArea_;
case kwRGap:
return rgap_;
case kwPForce: var.setValue(fictForce_); return var;
case kwPois: return poisson_;
case kwSnCohRes : return sn_cohres_;
//case kwSnTenRes : return sn_tenres();
case kwSnDil : return std::atan(sn_dil_)/dDegrad;
case kwSnDilZ : return sn_dilzero_;
case kwSnNormDisp: return sn_ndisp_;
case kwSnShearDisp: var.setValue(sn_sdisp_); return var;
case kwSnCohDc : return sn_cohdc();
case kwSnTenDc : return sn_tendc();
case kwSnHeal : return sn_heal_;
case kwTenTable:
if (sn_tabPos_ < tenTable_.size())
if (sn_tabPos_ == 0)
var.setValue(DVect2(1,0));
else
var.setValue(tenTable_[sn_tabPos_]);
else
var.setValue(DVect2(0,0));
return var;
case kwCohTable:
if (sn_tabPos_ < cohTable_.size())
if (sn_tabPos_ == 0)
var.setValue(DVect2(1,0));
else
var.setValue(cohTable_[sn_tabPos_]);
else
var.setValue(DVect2(0,0));
return var;
case kwTablePos: return sn_tabPos_+1;
case kwPorP: return sn_por_;
case kwStressNorm: {
const IContactMechanical* c(convert_getcast<IContactMechanical>(con));
if (!c)
return 0.0;
return SMax(c).x() + sn_por_;
}
}
assert(0);
return QVariant();
}
bool ContactModelRBSN::getPropertyGlobal(uint i) const {
// Returns whether or not a property is held in the global axis system (TRUE)
// or the local system (FALSE). Used by the plotting logic.
switch (i) {
case kwSNF:
case kwSNM:
case kwDpF:
return false;
}
return true;
}
bool ContactModelRBSN::setProperty(uint i,const QVariant &v,IContact *) {
// Set a contact model property. Return value indicates that the timestep
// should be recalculated.
dpProps dp;
switch (i) {
case kwKn: {
if (!v.canConvert<double>())
throw Exception("kn must be a double.");
double val(v.toDouble());
if (val<0.0)
throw Exception("Negative kn not allowed.");
kTran_ = val;
return true;
}
case kwKs: {
if (!v.canConvert<double>())
throw Exception("ks must be a double.");
double val(v.toDouble());
if (val<0.0)
throw Exception("Negative ks not allowed.");
if (!kTran_)
kTran_ = val;
else
kRatio_ = kTran_ / val;
return true;
}
case kwKrot: {
DAVect val(0.0);
#ifdef TWOD
if (!v.canConvert<DAVect>() && !v.canConvert<double>())
throw Exception("krot must be an angular vector.");
if (v.canConvert<DAVect>())
val = DAVect(v.value<DAVect>());
else
val = DAVect(v.toDouble());
#else
if (!v.canConvert<DAVect>() && !v.canConvert<DVect>())
throw Exception("krot must be an angular vector.");
if (v.canConvert<DAVect>())
val = DAVect(v.value<DAVect>());
else
val = DAVect(v.value<DVect>());
#endif
kRot_ = val;
return false;
}
case kwFric: {
if (!v.canConvert<double>())
throw Exception("fric must be a double.");
double val(v.toDouble());
if (val<0.0)
throw Exception("Negative fric not allowed.");
fric_ = val;
//if (!sn_fa_)
// sn_fa_ = fric_;
return false;
}
case kwBMul: {
if (!v.canConvert<double>())
throw Exception("sn_bmul must be a double.");
double val(v.toDouble());
if (val<0.0)
throw Exception("Negative sn_bmul not allowed.");
sn_bmul_ = val;
return false;
}
case kwTMul: {
if (!v.canConvert<double>())
throw Exception("sn_tmul must be a double.");
double val(v.toDouble());
if (val<0.0)
throw Exception("Negative st_bmul not allowed.");
sn_tmul_ = val;
return false;
}
case kwSNMode: {
if (!v.canConvert<uint>())
throw Exception("sn_mode must be 0 (absolute) or 1 (incremental).");
double val(v.toUInt());
if (val>1)
throw Exception("sn_mode must be 0 (absolute) or 1 (incremental).");
sn_mode_ = val;
return false;
}
case kwSNRMul: {
if (!v.canConvert<double>())
throw Exception("rmul must be a double.");
double val(v.toDouble());
if (val<0.0)
throw Exception("Negative rmul not allowed.");
sn_rmul_ = val;
return false;
}
case kwSNF: {
if (!v.canConvert<DVect>())
throw Exception("sn_force must be a vector.");
DVect val(v.value<DVect>());
sn_F_ = val;
return false;
}
case kwSNM: {
DAVect val(0.0);
#ifdef TWOD
if (!v.canConvert<DAVect>() && !v.canConvert<double>())
throw Exception("res_moment must be an angular vector.");
if (v.canConvert<DAVect>())
val = DAVect(v.value<DAVect>());
else
val = DAVect(v.toDouble());
#else
if (!v.canConvert<DAVect>() && !v.canConvert<DVect>())
throw Exception("res_moment must be an angular vector.");
if (v.canConvert<DAVect>())
val = DAVect(v.value<DAVect>());
else
val = DAVect(v.value<DVect>());
#endif
sn_M_ = val;
return false;
}
case kwDpNRatio: {
if (!v.canConvert<double>())
throw Exception("dp_nratio must be a double.");
double val(v.toDouble());
if (val<0.0)
throw Exception("Negative dp_nratio not allowed.");
if (val == 0.0 && !dpProps_)
return false;
if (!dpProps_)
dpProps_ = NEWC(dpProps());
dpProps_->dp_nratio_ = val;
return true;
}
case kwDpSRatio: {
if (!v.canConvert<double>())
throw Exception("dp_sratio must be a double.");
double val(v.toDouble());
if (val<0.0)
throw Exception("Negative dp_sratio not allowed.");
if (val == 0.0 && !dpProps_)
return false;
if (!dpProps_)
dpProps_ = NEWC(dpProps());
dpProps_->dp_sratio_ = val;
return true;
}
case kwDpMode: {
if (!v.canConvert<int>())
throw Exception("The viscous mode dp_mode must be 0, 1, 2, or 3.");
int val(v.toInt());
if (val == 0 && !dpProps_)
return false;
if (val < 0 || val > 3)
throw Exception("The viscous mode dp_mode must be 0, 1, 2, or 3.");
if (!dpProps_)
dpProps_ = NEWC(dpProps());
dpProps_->dp_mode_ = val;
return false;
}
case kwDpF: {
if (!v.canConvert<DVect>())
throw Exception("dp_force must be a vector.");
DVect val(v.value<DVect>());
if (val.fsum() == 0.0 && !dpProps_)
return false;
if (!dpProps_)
dpProps_ = NEWC(dpProps());
dpProps_->dp_F_ = val;
return false;
}
case kwSNTStr: {
if (!v.canConvert<double>())
throw Exception("sn_ten must be a double.");
double val(v.toDouble());
if (val < 0.0)
throw Exception("Negative sn_ten not allowed.");
tenTable_[0].rx() = val;
return false;
}
case kwSNCoh: {
if (!v.canConvert<double>())
throw Exception("sn_coh must be a double.");
double val(v.toDouble());
if (val<0.0)
throw Exception("Negative pb_coh not allowed.");
cohTable_[0].rx() = val;
return false;
}
case kwSNFa: {
if (!v.canConvert<double>())
throw Exception("sn_fa must be a double.");
double val(v.toDouble());
if (val<0.0)
throw Exception("Negative sn_fa not allowed.");
if (val >= 90.0)
throw Exception("sn_fa must be lower than 90.0 degrees.");
sn_fa_ = std::tan(val*dDegrad);
if (!fric_)
fric_ = sn_fa_;
return false;
}
case kwSNMCF: {
if (!v.canConvert<double>())
throw Exception("sn_mcf must be a double.");
double val(v.toDouble());
if (val<0.0)
throw Exception("Negative sn_mcf not allowed.");
if (val > 1.0)
throw Exception("sn_mcf must be lower or equal to 1.0.");
sn_mcf_ = val;
return false;
}
case kwSNArea:
case kwUserArea: {
if (!v.canConvert<double>())
throw Exception("area must be a double.");
double val(v.toDouble());
if (val < 0.0)
throw Exception("Negative area not allowed.");
if (userArea_ && val) {
double rat = userArea_ / val;
kTran_ *= rat;
kRot_ *= rat;
}
userArea_ = val;
return true;
}
case kwRGap: {
if (!v.canConvert<double>())
throw Exception("Reference gap must be a double.");
double val(v.toDouble());
rgap_ = val;
return false;
}
case kwPois: {
if (!v.canConvert<double>())
throw Exception("Reference poisson must be a double.");
double val(v.toDouble());
poisson_ = val;
return false;
}
case kwPoisDiag: {
if (!v.canConvert<uint>())
throw Exception("Reference diagonal must be an integer.");
uint b(v.toUInt());
if (b > 1)
throw Exception("diagonal must be 0 (diagonal terms only) or 1 (all terms).");
poisOffDiag_ = b == 0 ? false : true;
return false;
}
case kwSnCohRes: {
bool ok;
double val(v.toDouble(&ok));
if (!ok || val<0.0)
throw Exception("sn_cohres must be a positive double.");
sn_cohres_ = val;
return false;
}
case kwSnDil: {
bool ok;
double val(v.toDouble(&ok));
if (!ok || val<0.0)
throw Exception("sn_dil must be a positive double.");
sn_dil_ = std::tan(val*dDegrad);
return false;
}
case kwSnDilZ: {
bool ok;
double val(v.toDouble(&ok));
if (!ok || val<0.0)
throw Exception("sn_dil_zero must be a positive double.");
sn_dilzero_ = val;
return false;
}
case kwSnNormDisp: {
bool ok;
double val(v.toDouble(&ok));
if (!ok)
throw Exception("sn_ndisp must be a positive double.");
sn_ndisp_ = val;
return false;
}
case kwSnShearDisp: {
if (!v.canConvert<DVect2>())
throw Exception("sn_sdisp must be a vector.");
DVect2 val(v.value<DVect2>());
sn_sdisp_ = val;
return false;
}
case kwSnCohDc: {
bool ok;
double val(v.toDouble(&ok));
if (!ok || val<0.0)
throw Exception("sn_cohdc must be a positive double.");
if (cohTable_.size() == 1)
cohTable_.push_back(DVect2(0,val));
else {
cohTable_.back().ry() = val;
std::sort(cohTable_.begin(),cohTable_.end(), [](const DVect2& a, const DVect2& b) { return a.y() < b.y(); } );
while (cohTable_.back().y() > val)
cohTable_.pop_back();
}
if (sn_state_ == 0)
sn_state_ = 6;
return false;
}
case kwSnTenDc: {
bool ok;
double val(v.toDouble(&ok));
if (!ok || val<0.0)
throw Exception("sn_tendc must be a positive double.");
if (tenTable_.size() == 1)
tenTable_.push_back(DVect2(0,val));
else {
tenTable_.back().ry() = val;
std::sort(tenTable_.begin(),tenTable_.end(), [](const DVect2& a, const DVect2& b) { return a.y() < b.y(); } );
while (tenTable_.back().y() > val)
tenTable_.pop_back();
}
return false;
}
case kwSnHeal: {
bool ok;
int val(v.toInt(&ok));
if (!ok || (val != 0 && val != 1))
throw Exception("sn_heal must be 0 or 1.");
sn_heal_ = val == 0 ? false : true;
return false;
}
case kwTenTable: {
if (!v.canConvert<DVect2>())
throw Exception("sn_tentab entry must be a strength and distance.");
DVect2 vl(v.value<DVect2>());
if (vl.x() < 0 || vl.y() < 0)
throw Exception("The sn_tentab entries must be positive.");
if (vl.y() == 0)
throw Exception("Use sn_ten to set the tensile strength at 0 elongation.");
tenTable_.push_back(vl);
std::sort(tenTable_.begin(),tenTable_.end(), [](const DVect2& a, const DVect2& b) { return a.y() < b.y(); } );
}
return false;
case kwCohTable: {
if (!v.canConvert<DVect2>())
throw Exception("sn_cohtab entry must be a strength and distance.");
DVect2 vl(v.value<DVect2>());
if (vl.x() < 0 || vl.y() < 0)
throw Exception("The sn_cohtab entries must be positive.");
if (vl.y() == 0)
throw Exception("Use sn_coh to set the cohesive strength at 0 elongation.");
cohTable_.push_back(vl);
std::sort(cohTable_.begin(),cohTable_.end(), [](const DVect2& a, const DVect2& b) { return a.y() < b.y(); } );
}
return false;
case kwTablePos: {
bool ok;
int val(v.toInt(&ok));
if (!ok || val < 1)
throw Exception("sn_tabpos must be 1 or greater.");
sn_tabPos_ = val - 1;
return false;
}
case kwPorP: {
if (!v.canConvert<double>())
throw Exception("sn_porp must be a double.");
double val = v.toDouble();
sn_por_ = val;
return true;
}
}
return false;
}
bool ContactModelRBSN::getPropertyReadOnly(uint i) const {
// Returns TRUE if a property is read only or FALSE otherwise.
switch (i) {
case kwDpF:
case kwSNS:
case kwSNBS:
case kwSNTS:
case kwEmod:
case kwKRatio:
case kwSNState:
case kwSNRadius:
case kwSNSStr:
case kwSNSig:
case kwSNTau:
case kwPForce:
case kwStressNorm:
return true;
default:
break;
}
return false;
}
bool ContactModelRBSN::supportsInheritance(uint i) const {
// Returns TRUE if a property supports inheritance or FALSE otherwise.
switch (i) {
case kwKn:
case kwKs:
case kwFric:
return true;
default:
break;
}
return false;
}
QString ContactModelRBSN::getMethodArguments(uint i) const {
// Return a list of contact model method argument names.
switch (i) {
case kwAssignStiffness:
return "kn,kratio";
case kwStiffness:
return "emod,poisson";
case kwBond:
return "gap";
case kwUnbond:
return "gap";
case kwArea:
case kwResetDisp:
return QString();
}
assert(0);
return QString();
}
bool ContactModelRBSN::setMethod(uint i,const QVector<QVariant> &vl,IContact *con) {
// Apply the specified method.
IContactMechanical *c(convert_getcast<IContactMechanical>(con));
switch (i) {
case kwAssignStiffness: {
poisson_ = 0.0;
if (vl.at(0).isNull())
throw Exception("Argument kn must be specified with method assign-stiffness in contact model %1.",getName());
double knpa = vl.at(0).toDouble();
if (knpa<=0.0)
throw Exception("Negative or zero kn not allowed in contact model %1.",getName());
if (vl.at(1).isNull())
throw Exception("Argument kratio must be specified with method assign-stiffness in contact model %1.",getName());
kRatio_ = vl.at(1).toDouble();
if (kRatio_<0.0) {
kRatio_ = 0.0;
throw Exception("Negative kratio not allowed in contact model %1.",getName());
}
const IContactMechanical *mc = convert_getcast<IContactMechanical>(con);
assert(mc);
std::vector<DVect> pts;
mc->getJointGeometry(&pts);
double area = 0.0;
#ifdef THREED
// Step 1: get centroid and area
for (int i=1; i<pts.size()-1; ++i) {
double a = (pts[0] - pts[i]).mag();
double b = (pts[0] - pts[i+1]).mag();
double c = (pts[i] - pts[i+1]).mag();
double la = 0.0;
if (b > a)
std::swap(a,b);
if (c > a)
std::swap(a,c);
if (c > b)
std::swap(b,c);
if (c - (a - b) >= 0)
la = 0.25 * sqrt((a+(b+c))*(c-(a-b))*(c+(a-b))*(a+(b-c)));
area += la;
}
#else
// Assume unit thickness in the out of plane direction
area = (pts[1] - pts[0]).mag();
#endif
userArea_ = area;
kTran_ = knpa * area;
E_ = kTran_ / area;
kRot_ = DAVect(0.0);
setInheritance(1,false);
setInheritance(2,false);
sn_mode_ = 1.0;
return true;
}
case kwStiffness: {
FP_S;
poisson_ = 0.0;
if (vl.at(0).isNull())
throw Exception("Argument emod must be specified with method compute-stiffness in contact model %1.",getName());
E_ = vl.at(0).toDouble();
if (E_<=0.0)
throw Exception("Negative or zero emod not allowed in contact model %1.",getName());
if (vl.at(1).isNull())
throw Exception("Argument poisson must be specified with method compute-stiffness in contact model %1.",getName());
poisson_ = vl.at(1).toDouble();
if (poisson_ < 0.0) {
poisson_ = 0.0;
throw Exception("Negative poisson not allowed in contact model %1.",getName());
}
const IBody *b1 = con->getEnd1()->getIBody();
const IBody *b2 = con->getEnd2()->getIBody();
//double vol1 = b1->getVolume();
//double vol2 = b2->getVolume();
//if (std::max(vol1,vol2) > 10.*std::min(vol1,vol2))
// poisson_ = 0.0;
DVect pos1 = toDVect(b1->getIThing()->getLocation());
DVect pos2 = toDVect(b2->getIThing()->getLocation()) + con->getOffSet();
double dist = (pos1-pos2).mag();
if (con->withWall())
dist = (pos1 - con->getPosition()).mag();
double tol = std::max(pos1.abs().maxComp(),pos2.abs().maxComp())*limits<double>::epsilon()*1000;
if (dist < tol) {
poisson_ = 0;
userArea_ = 0;
kTran_ = 0;
kRot_.fill(0);
return true;
}
const IContactMechanical *mc = convert_getcast<IContactMechanical>(con);
assert(mc);
std::vector<DVect> pts;
FP_S;
mc->getJointGeometry(&pts);
FP_S;
double area = 0.0;
DAVect inertia(0.0);
#ifdef THREED
// Step 1: get centroid and area
DVect cm(0.0);
for (int i=1; i<pts.size()-1; ++i) {
DVect lcm = (pts[0] + pts[i] + pts[i+1])/3.0;
double a = (pts[0] - pts[i]).mag();
double b = (pts[0] - pts[i+1]).mag();
double c = (pts[i] - pts[i+1]).mag();
double la = 0.0;
if (b > a)
std::swap(a,b);
if (c > a)
std::swap(a,c);
if (c > b)
std::swap(b,c);
if (c - (a - b) >= 0)
la = 0.25 * sqrt((a+(b+c))*(c-(a-b))*(c+(a-b))*(a+(b-c)));
cm += lcm * la;
area += la;
}
FP_S;
if (area == 0.0) {
poisson_ = 0;
userArea_ = 0;
kTran_ = 0;
kRot_.fill(0);
return true;
}
cm /= area;
FP_S;
// Step 2 - center it and put in the local system
for (int i=0; i<pts.size(); ++i) {
pts[i] -= cm;
pts[i] = con->getLocalSystem().toLocal(pts[i]);
}
// Step 3: compute the polar inertia
for (int i=0; i<pts.size(); ++i) {
int j = i < pts.size()-1 ? i+1 : 0;
double xi = pts[i].y();
double xip1 = pts[j].y();
double yi = pts[i].z();
double yip1 = pts[j].z();
double frnt = (xi*yip1-xip1*yi);
inertia.ry() += frnt*(xi*xi+xi*xip1+xip1*xip1);
inertia.rz() += frnt*(yi*yi+yi*yip1+yip1*yip1);
}
inertia.ry() = std::abs(inertia.y() / 12.);
inertia.rz() = std::abs(inertia.z() / 12.);
inertia.rx() = inertia.y() + inertia.z();
#else
// Assume unit thickness in the out of plane direction
area = (pts[1] - pts[0]).mag();
inertia.rz() = area*area*area/12.;
#endif
userArea_ = area;
kTran_ = E_ * area / dist;
kRot_ = inertia *E_ / dist;
setInheritance(1,false);
setInheritance(2,false);
sn_mode_ = 1.0;
return true;
}
case kwBond: {
if (sn_state_ == 3) return false;
double mingap = -1.0 * limits<double>::max();
double maxgap = 0;
if (vl.at(0).canConvert<Double>())
maxgap = vl.at(0).toDouble();
else if (vl.at(0).canConvert<DVect2>()) {
DVect2 value = vl.at(0).value<DVect2>();
mingap = value.minComp();
maxgap = value.maxComp();
}
else if (!vl.at(0).isNull())
throw Exception("gap value %1 not recognized in method bond in contact model %2.", vl.at(1), getName());
double gap = c->getGap();
if (gap >= mingap && gap <= maxgap) {
sn_state_ = 3;
sn_mode_ = 1;
return true;
}
return false;
}
case kwUnbond: {
if (sn_state_ == 0) return false;
double mingap = -1.0 * limits<double>::max();
double maxgap = 0;
if (vl.at(0).canConvert<double>())
maxgap = vl.at(0).toDouble();
else if (vl.at(0).canConvert<DVect2>()) {
DVect2 value = vl.at(0).value<DVect2>();
mingap = value.minComp();
maxgap = value.maxComp();
}
else if (!vl.at(0).isNull())
throw Exception("gap value %1 not recognized in method unbond in contact model %2.", vl.at(0), getName());
double gap = c->getGap();
if (gap >= mingap && gap <= maxgap) {
sn_state_ = 0;
return true;
}
return false;
}
case kwArea: {
if (!userArea_) {
double rsq(1./std::max(c->getEnd1Curvature().y(),c->getEnd2Curvature().y()));
#ifdef THREED
userArea_ = rsq * rsq * dPi;
#else
userArea_ = rsq * 2.0;
#endif
}
return true;
}
case kwResetDisp:
sn_ndisp_ = 0.0;
for (int i=1; i<dim; ++i)
sn_sdisp_.rdof(i) = 0;
break;
}
return false;
}
double ContactModelRBSN::getEnergy(uint i) const {
// Return an energy value.
double ret(0.0);
if (!energies_)
return ret;
switch (i) {
case kwEStrain: return energies_->estrain_;
case kwESlip: return energies_->eslip_;
case kwEDashpot: return energies_->edashpot_;
}
assert(0);
return ret;
}
bool ContactModelRBSN::getEnergyAccumulate(uint i) const {
// Returns TRUE if the corresponding energy is accumulated or FALSE otherwise.
switch (i) {
case kwEStrain: return false;
case kwESlip: return true;
case kwEDashpot: return true;
}
assert(0);
return false;
}
void ContactModelRBSN::setEnergy(uint i,const double &d) {
// Set an energy value.
if (!energies_) return;
switch (i) {
case kwEStrain: energies_->estrain_ = d; return;
case kwESlip: energies_->eslip_ = d; return;
case kwEDashpot: energies_->edashpot_= d; return;
}
assert(0);
return;
}
bool ContactModelRBSN::validate(ContactModelMechanicalState *state,const double &) {
// Validate the / Prepare for entry into ForceDispLaw. The validate function is called when:
// (1) the contact is created, (2) a property of the contact that returns a true via
// the setProperty method has been modified and (3) when a set of cycles is executed
// via the {cycle N} command.
// Return value indicates contact activity (TRUE: active, FALSE: inactive).
assert(state);
const IContactMechanical *c = state->getMechanicalContact();
assert(c);
if (state->trackEnergy_)
activateEnergy();
if (inheritanceField_ & KnMask)
updateKn(c);
if (inheritanceField_ & KsMask)
updateKs(c);
if (inheritanceField_ & FricMask)
updateFric(c);
updateStiffness(state);
return checkActivity(state->gap_);
}
static const QString knstr("kn");
bool ContactModelRBSN::updateKn(const IContactMechanical *con) {
assert(con);
QVariant v1 = con->getEnd1()->getProperty(knstr);
QVariant v2 = con->getEnd2()->getProperty(knstr);
if (!v1.isValid() || !v2.isValid())
return false;
double kn1 = v1.toDouble();
double kn2 = v2.toDouble();
double val = kTran_;
if (kn1 && kn2)
kTran_ = kn1*kn2/(kn1+kn2);
else if (kn1)
kTran_ = kn1;
else if (kn2)
kTran_ = kn2;
return ( (kTran_ != val) );
}
static const QString ksstr("ks");
bool ContactModelRBSN::updateKs(const IContactMechanical *con) {
assert(con);
QVariant v1 = con->getEnd1()->getProperty(ksstr);
QVariant v2 = con->getEnd2()->getProperty(ksstr);
if (!v1.isValid() || !v2.isValid())
return false;
double ks1 = v1.toDouble();
double ks2 = v2.toDouble();
double val = kTran_;
if (ks1 && ks2)
kTran_ = ks1*ks2/(ks1+ks2);
else if (ks1)
kTran_ = ks1;
else if (ks2)
kTran_ = ks2;
return ( (kTran_ != val) );
}
static const QString fricstr("fric");
bool ContactModelRBSN::updateFric(const IContactMechanical *con) {
assert(con);
QVariant v1 = con->getEnd1()->getProperty(fricstr);
QVariant v2 = con->getEnd2()->getProperty(fricstr);
if (!v1.isValid() || !v2.isValid())
return false;
double fric1 = std::max(0.0,v1.toDouble());
double fric2 = std::max(0.0,v2.toDouble());
double val = fric_;
fric_ = std::min(fric1,fric2);
return ( (fric_ != val) );
}
bool ContactModelRBSN::endPropertyUpdated(const QString &name,const IContactMechanical *c) {
// The endPropertyUpdated method is called whenever a surface property (with a name
// that matches an inheritable contact model property name) of one of the contacting
// pieces is modified. This allows the contact model to update its associated
// properties. The return value denotes whether or not the update has affected
// the time step computation (by having modified the translational or rotational
// tangent stiffnesses). If true is returned, then the time step will be recomputed.
assert(c);
QStringList availableProperties = getProperties().simplified().replace(" ","").split(",",QString::SkipEmptyParts);
QRegExp rx(name,Qt::CaseInsensitive);
int idx = availableProperties.indexOf(rx)+1;
bool ret=false;
if (idx<=0)
return ret;
switch(idx) {
case kwKn: { //kn
if (inheritanceField_ & KnMask)
ret = updateKn(c);
break;
}
case kwKs: { //ks
if (inheritanceField_ & KsMask)
ret =updateKs(c);
break;
}
case kwFric: { //fric
if (inheritanceField_ & FricMask)
updateFric(c);
break;
}
}
return ret;
}
ContactModelRBSN::StiffData ContactModelRBSN::computeStiffData(ContactModelMechanicalState *state) const {
// Update contact data
//double Cmin1 = state->end1Curvature_.x();
double Cmax1 = state->end1Curvature_.y();
double Cmax2 = state->end2Curvature_.y();
double br = sn_rmul_ * 1.0 / std::max(Cmax1, Cmax2);
if (userArea_)
#ifdef THREED
br = std::sqrt(userArea_ / dPi);
#else
br = userArea_ / 2.0;
#endif
StiffData ret;
ret.reff_ = br;
ret.trans_ = DVect2(kTran_,kTran_/kRatio_);
ret.ang_ = kRot_;
return ret;
}
void ContactModelRBSN::updateStiffness(ContactModelMechanicalState *state) {
// first compute stiffness data
StiffData stiff = computeStiffData(state);
// Now calculate effective stiffness
DVect2 retT = stiff.trans_;
// correction if viscous damping active
if (dpProps_) {
DVect2 correct(1.0);
if (dpProps_->dp_nratio_)
correct.rx() = sqrt(1.0+dpProps_->dp_nratio_*dpProps_->dp_nratio_) - dpProps_->dp_nratio_;
if (dpProps_->dp_sratio_)
correct.ry() = sqrt(1.0+dpProps_->dp_sratio_*dpProps_->dp_sratio_) - dpProps_->dp_sratio_;
retT /= (correct*correct);
}
effectiveTranslationalStiffness_ = retT;
// Effective rotational stiffness (bending and twisting)
effectiveRotationalStiffness_ = stiff.ang_;
}
bool ContactModelRBSN::forceDisplacementLaw(ContactModelMechanicalState *state,const double ×tep) {
assert(state);
if (state->activated()) {
// The contact was just activated from an inactive state
// Trigger the FISH callback if one is hooked up to the
// contact_activated event.
if (cmEvents_[fActivated] >= 0) {
auto c = state->getContact();
std::vector<fish::Parameter> arg = { fish::Parameter(c->getIThing()) };
IFishCallList *fi = const_cast<IFishCallList*>(state->getProgram()->findInterface<IFishCallList>());
fi->setCMFishCallArguments(c,arg,cmEvents_[fActivated]);
}
}
updateStiffness(state);
// accumulate shear displacement for dilation
sn_ndisp_ += state->relativeTranslationalIncrement_.x();
DVect shearInc = state->relativeTranslationalIncrement_;
shearInc.rx() = 0;
sn_sdisp_.ry() += shearInc.mag();
if (isBonded()) return FDLawBonded(state, timestep);
else return FDLawUnBonded(state, timestep);
}
bool ContactModelRBSN::thermalCoupling(ContactModelMechanicalState*, ContactModelThermalState* ts, IContactThermal*, const double&) {
// Account for thermal expansion in incremental mode
if (sn_mode_ == 0 || ts->gapInc_ == 0.0) return false;
DVect finc(0.0);
finc.rx() = kTran_ * ts->gapInc_;
sn_F_ -= finc;
return true;
}
bool ContactModelRBSN::FDLawBonded(ContactModelMechanicalState *state, const double ×tep) {
// initialize ... get the geometry information
DVect3 geom = computeGeomData(state->getMechanicalContact());
double area = geom.x();
double bi = geom.y();
double br = geom.z();
double kn = kTran_;
double ks = kn / kRatio_;
double kb = kRot_.z();
#if DIM==3
kb = std::sqrt(kb*kb + kRot_.y()*kRot_.y());
double kt = kRot_.x();
#else
double kt = 0.0;
#endif
DVect totalForce = sn_F_ + fictForce_;
//double nsmax0 = -(totalForce.x() / area) + sn_mcf_* sqrt(sn_M_.y()*sn_M_.y() + sn_M_.z()*sn_M_.z()) * br / bi;
// Relative translational/rotational displacement increments
DVect trans = state->relativeTranslationalIncrement_;
DAVect ang = state->relativeAngularIncrement_;
// Store previous force and moment
DVect sn_F_old = totalForce;
sn_F_old.rx() -= sn_por_ * area;
DAVect sn_M_old = sn_M_;
DVect theStiff(ks);
theStiff.rx() = kn;
sn_F_ -= trans * theStiff;
sn_M_ -= ang * kRot_;
if (poisson_ != 0.0) {
const IContact *con = state->getContact();
const IBody *b1 = con->getEnd1()->getIBody();
const IBody *b2 = con->getEnd2()->getIBody();
#ifdef THREED
std::array<double,6> stress11 = {0,0,0,0,0,0};
std::array<double,6> stress22 = {0,0,0,0,0,0};
#else
std::array<double,3> stress11 = {0,0,0};
std::array<double,3> stress22 = {0,0,0};
#endif
double vol1 = b1->getVolume();
double vol2 = b2->getVolume();
b1->getOldStress(stress11);
b2->getOldStress(stress22);
double ms = 0.0;
for (int i=0; i<stress11.size(); ++i) {
stress11[i] = (stress11[i]*vol1 + stress22[i]*vol2)/(vol1 + vol2);
ms = std::max(ms,abs(stress11[i]));
}
DMatrix<dim,dim> stresst(0.0);
#ifdef THREED
stresst.get(0,0) = -poisson_*stress11[1] - poisson_*stress11[2];
stresst.get(1,1) = -poisson_*stress11[0] - poisson_*stress11[2];
#else
stresst.get(0,0) = -poisson_*stress11[1];
stresst.get(1,1) = -poisson_*stress11[0];
#endif
#ifdef THREED
stresst.get(2,2) = -poisson_*stress11[0] - poisson_*stress11[1];
#endif
if (poisOffDiag_) {
#ifdef THREED
double sxy = stress11[3];
double szx = stress11[4];
double syz = stress11[5];
stresst.get(0,1) = poisson_ * sxy;
stresst.get(1,0) = stresst.get(0,1);
stresst.get(0,2) = poisson_ * szx;
stresst.get(2,0) = stresst.get(0,2);
stresst.get(1,2) = poisson_ * syz;
stresst.get(2,1) = stresst.get(1,2);
#else
double sxy = stress11[2];
stresst.get(0,1) = poisson_ * sxy;
stresst.get(1,0) = stresst.get(0,1);
#endif
}
DVect norm = toVect(con->getNormal());
DVect traction = stresst * norm * userArea_;
DVect shear(0.0);
shear.ry() = 1.0;
shear = con->getLocalSystem().toGlobal(shear);
#ifdef THREED
DVect ns = con->getLocalSystem().toGlobal(DVect(0.,0.,1.));
fictForce_ = DVect(norm|traction,shear|traction,ns|traction);
#else
fictForce_ = DVect(norm|traction,shear|traction);
#endif
if (forceSet_ && ms) {
forceSet_ = false;
sn_F_ -= fictForce_;
}
}
FP_S;
double porForce = sn_por_ * area;
sn_F_.rx() -= porForce;
totalForce = sn_F_ + fictForce_;
if (state->canFail_) {
double dbend = sqrt(sn_M_.y()*sn_M_.y() + sn_M_.z()*sn_M_.z());
double nsmax = -(totalForce.x() / area) + sn_mcf_*dbend * br / bi;
bool failed = false;
if (sn_state_ == 3 || sn_state_ == 5) {
double compVal = sn_state_ == 3 ? tenTable_[0].x() : transTen_;
if (nsmax >= compVal ) {
if (tenTable_.back().y() < limits<double>::epsilon()*100)
failed = true;
else {
if (sn_state_ == 3)
sn_elong_ = 0;
transTen_ = compVal;
sn_state_ = 4;
}
}
}
FP_S;
if (sn_state_ == 4) {
sn_elong_ += trans.x();
sn_elong_ = std::max(0.0,sn_elong_);
int ww = -1;
if (sn_elong_ <= tenTable_.back().y()) {
for (int i=0; i<tenTable_.size(); ++i) {
if (tenTable_[i].y() >= sn_elong_) {
ww = i;
break;
}
}
} else
ww = tenTable_.size() - 1;
if (ww > 0) {
//double factor = std::min(1.0, sn_elong_ / tenTable_[ww].y());
double prevVal = ww == 1 ? 1 : tenTable_[ww-1].x();
double curVal = tenTable_[ww].x();
double prevElong = tenTable_[ww-1].y();
double curElong = tenTable_[ww].y();
double slope = (curVal - prevVal)/(curElong - prevElong);
FP_S;
//y-y0 = m(x-x0)
double nstren = slope * (sn_elong_ - prevElong) + prevVal;
if (nstren <= 0)
failed = true;
else {
nstren *= tenTable_[0].x();
if (nsmax >= nstren || slope > 0) {
double fac = nstren / nsmax;
sn_F_.rx() *= fac;
#if DIM==3
sn_M_.ry() *= fac;
#endif
sn_M_.rz() *= fac;
fictForce_.rx() *= fac;
} else {
sn_state_ = 5;
transTen_ = -(sn_F_old.x() / area) + sn_mcf_* sqrt(sn_M_old.y()*sn_M_old.y() + sn_M_old.z()*sn_M_old.z()) * br / bi;
}
}
}
}
if (sn_state_ == 6 && nsmax >= 0)
failed = true;
FP_S;
if (failed) {
// Failed in tension
double se = strainEnergy(kn, ks, kb, kt); // bond strain energy at the onset of failure
sn_state_ = 1;
sn_F_.fill(0.0);
sn_M_.fill(0.0);
failed = true;
fictForce_ = DVect(0.0);
//sn_F_.rx() = -sn_tenres_ * area;
if (cmEvents_[fBondBreak] >= 0) {
auto c = state->getContact();
std::vector<fish::Parameter> arg = { fish::Parameter(c->getIThing()),
fish::Parameter((qint64)sn_state_),
fish::Parameter(nsmax),
fish::Parameter(se)
};
IFishCallList *fi = const_cast<IFishCallList*>(state->getProgram()->findInterface<IFishCallList>());
fi->setCMFishCallArguments(c,arg,cmEvents_[fBondBreak]);
}
}
FP_S;
if (!failed) {
/* check for shear failure */
double dtwist = sn_M_.x();
DVect bfs(totalForce);
bfs.rx() = 0.0;
double dbfs = bfs.mag();
double ssmax = dbfs / area + sn_mcf_*std::abs(dtwist) * 0.5* br / bi;
double ss = shearStrength(area);
FP_S;
if (ss < 0)
ss = 0;
if (ss <= ssmax) {
// strength when it breaks for
// Failed in shear
double se = strainEnergy(kn, ks, kb, kt); // bond strain energy at the onset of failure
sn_state_ = 2;
fictForce_ = DVect(0.0);
FP_S;
sn_F_ = totalForce;
if (cmEvents_[fBondBreak] >= 0) {
auto c = state->getContact();
std::vector<fish::Parameter> arg = { fish::Parameter(c->getIThing()),
fish::Parameter((qint64)sn_state_),
fish::Parameter(ss),
fish::Parameter(se)
};
IFishCallList *fi = const_cast<IFishCallList*>(state->getProgram()->findInterface<IFishCallList>());
fi->setCMFishCallArguments(c,arg,cmEvents_[fBondBreak]);
}
double mm = 0.0;
for (int i=1; i<dim; ++i)
mm += trans[i]*trans[i];
sn_sdisp_.rx() = std::sqrt(mm);
double crit = sn_F_.x() * fric_ + sn_cohres_ * area;
if (sn_cohdc() > std::numeric_limits<double>::epsilon()) {
int ww = -1;
if (sn_sdisp_.x() <= sn_cohdc()) {
for (int i=0; i<cohTable_.size(); ++i) {
if (cohTable_[i].y() >= sn_sdisp_.x()) {
ww = i;
break;
}
}
} else
ww = cohTable_.size() - 1;
if (ww > 0) {
double prevVal = ww == 1 ? 1: cohTable_[ww-1].x() ;//critBreak_ : cohTable_[ww-1].x() + sn_F_.x() * fric_;
double curVal = cohTable_[ww].x();//cohTable_[ww].x() + sn_F_.x() * fric_;
double prevShear = cohTable_[ww-1].y();
double curShear = cohTable_[ww].y();
double slope = (curVal - prevVal)/(curShear - prevShear);
// should go from 0 to 1
double mval = slope * (sn_sdisp_.x() - prevShear) + prevVal;
double fact = std::max(0.,std::min(1.0,1.0 - mval));
assert(fact >= 0 && fact <= 1.0);
double theFric = fric_;
if (sn_fa_)
theFric = sn_fa_ + (fric_ - sn_fa_)*fact;
double theCoh = sn_Coh();
if (theCoh)
theCoh = sn_Coh() + (sn_cohres_ - sn_Coh())*fact;
crit = sn_F_.x() * theFric + theCoh * geom.x();
}
}
// Resolve sliding.
FP_S;
if (crit < 0)
crit = 0;
DVect sforce = sn_F_; sforce.rx() = 0.0;
// The is the magnitude of the shear force.
double sfmag = sforce.mag();
// Sliding occurs when the magnitude of the shear force is greater than the
// critical value.
if (sfmag > crit) {
// Lower the shear force to the critical value for sliding.
double rat = crit / sfmag;
sforce *= rat;
sforce.rx() = sn_F_.x();
sn_F_ = sforce;
sn_S_ = true;
}
if (sn_S_) {
if (sn_dil_ > 0) {
double zdd = sn_dilzero_ != 0 ? sn_dilzero_ : limits<double>::max();
double usm = sn_sdisp_.y();
if (usm < zdd) {
double sInc = 0.0;
for (int i=1; i<dim; ++i)
sInc += trans.dof(i)*trans.dof(i);
sInc = std::sqrt(sInc);
sn_F_.rx() += kTran_ * sn_dil_ * sInc;
}
}
}
// Resolve bending
crit = sn_bmul_*2.1*0.25*br*std::abs(sn_F_.x()); // Jiang 2015
FP_S;
DAVect test = sn_M_;
#if DIM==3
test.rx() = 0.0;
#endif
double tmag = test.mag();
if (tmag > crit) {
// Lower the bending moment to the critical value for sliding.
double rat = crit / tmag;
test *= rat;
sn_BS_ = true;
}
sn_M_.rz() = test.z();
#if DIM==3
sn_M_.ry() = test.y();
// Resolve twisting
crit = sn_tmul_ * 0.65*fric_* br*std::abs(sn_F_.x()) ; // Jiang 2015
tmag = std::abs(sn_M_.x());
if (tmag > crit) {
// Lower the shear force to the critical value for sliding.
double rat = crit / tmag;
tmag = sn_M_.x() * rat;
sn_TS_ = true;
}
sn_M_.rx() = tmag;
FP_S;
#endif
}
}
}
sn_F_old.rx() += porForce;
sn_F_.rx() += porForce;
totalForce = sn_F_ + fictForce_;
FP_S;
// Account for dashpot forces if the dashpot structure has been defined.
if (dpProps_) {
dpProps_->dp_F_.fill(0.0);
double vcn(0.0), vcs(0.0);
// Calculate the damping coefficients.
vcn = dpProps_->dp_nratio_ * 2.0 * sqrt((state->inertialMass_*(kn)));
vcs = dpProps_->dp_sratio_ * 2.0 * sqrt((state->inertialMass_*(ks)));
// First damp the shear components
for (int i = 1; i<dim; ++i)
dpProps_->dp_F_.rdof(i) = trans.dof(i) * (-1.0* vcs) / timestep;
// Damp the normal component
dpProps_->dp_F_.rx() -= trans.x() * vcn / timestep;
// Need to change behavior based on the dp_mode.
if ((dpProps_->dp_mode_ == 1 || dpProps_->dp_mode_ == 3)) {
// Limit in tension if not bonded.
if (sn_state_ < 3 && (dpProps_->dp_F_.x() + totalForce.x() < 0))
dpProps_->dp_F_.rx() = -totalForce.rx();
}
if (sn_S_ && dpProps_->dp_mode_ > 1) {
// Limit in shear if sliding.
double dfn = dpProps_->dp_F_.rx();
dpProps_->dp_F_.fill(0.0);
dpProps_->dp_F_.rx() = dfn;
}
}
FP_S;
//Compute energies if energy tracking has been enabled.
if (state->trackEnergy_) {
assert(energies_);
energies_->estrain_ = 0.0;
if (kn)
// Calculate the strain energy.
energies_->estrain_ = 0.5*totalForce.x()*totalForce.x() / kn;
if (ks) {
DVect s = totalForce;
s.rx() = 0.0;
double smag2 = s.mag2();
// Add the shear component of the strain energy.
energies_->estrain_ += 0.5*smag2 / ks;
if (sn_S_) {
// If sliding calculate the slip energy and accumulate it.
sn_F_old.rx() = 0.0;
DVect avg_F_s = (s + sn_F_old)*0.5;
DVect u_s_el = (s - sn_F_old) / ks;
DVect u_s(0.0);
for (int i = 1; i < dim; ++i)
u_s.rdof(i) = trans.dof(i);
energies_->eslip_ -= std::min(0.0, (avg_F_s | (u_s + u_s_el)));
}
}
// Add the bending/twisting resistance energy contributions.
if (kb) {
DAVect tmp = sn_M_;
#ifdef THREED
tmp.rx() = 0.0;
#endif
energies_->estrain_ += 0.5*tmp.mag2() / kb;
if (sn_BS_) {
// accumulate bending slip energy.
DAVect tmp_old = sn_M_old;
#ifdef THREED
tmp_old.rx() = 0.0;
#endif
DAVect avg_M = (tmp + tmp_old)*0.5;
DAVect t_s_el = (tmp - tmp_old) / kb;
energies_->eslip_ -= std::min(0.0, (avg_M | (ang + t_s_el)));
}
}
#ifdef THREED
if (kt) {
double mt = std::abs(sn_M_.x());
energies_->estrain_ += 0.5*mt*mt / kt;
if (sn_TS_) {
// accumulate twisting slip energy.
DAVect tmp(0.0);
DAVect tmp_old(0.0);
tmp.rx() = sn_M_.x();
tmp_old.rx() = sn_M_old.x();
DAVect avg_M = (tmp + tmp_old)*0.5;
DAVect t_s_el = (tmp - tmp_old) / kt;
energies_->eslip_ -= std::min(0.0, (avg_M | (ang + t_s_el)));
}
}
#endif
if (dpProps_) {
// Calculate damping energy (accumulated) if the dashpots are active.
energies_->edashpot_ -= dpProps_->dp_F_ | trans;
}
}
// This is just a sanity check to ensure, in debug mode, that the force/moment aren't wonky.
assert(sn_F_ == sn_F_);
assert(sn_M_ == sn_M_);
assert(fictForce_ == fictForce_);
FP_S;
return true;
}
bool ContactModelRBSN::FDLawUnBonded(ContactModelMechanicalState *state, const double ×tep) {
DVect3 geom = computeGeomData(state->getMechanicalContact());
double br = geom.z();
// Relative translational/rotational displacement increments
DVect trans = state->relativeTranslationalIncrement_;
DAVect ang = state->relativeAngularIncrement_;
double overlap = rgap_ - state->gap_;
double correction = 1.0;
if (state->activated() && sn_mode_ == 0 && trans.x()) {
correction = -1.0*overlap / trans.x();
if (correction < 0)
correction = 1.0;
}
// Store previous force and moment
DVect sn_F_old = sn_F_;
double porForce = sn_por_ * geom.x();
sn_F_old.rx() -= porForce;
DAVect sn_M_old = sn_M_;
double kb = kRot_.z();
#if DIM==3
double kt = kRot_.x();
//kb = std::sqrt(kb * kb + kRot_.y() * kRot_.y());
#endif
// absolute/incremental normal force calculation
DVect theStiff(kTran_/kRatio_);
theStiff.rx() = kTran_;
if (sn_mode_==0)
sn_F_.rx() = overlap * theStiff.x();
else
sn_F_.rx() -= trans.x() * theStiff.x();
// Normal force can only be positive if unbonded
sn_F_.rx() = std::max(0.0, sn_F_.x()) - porForce;
// Calculate the trial shear force.
DVect sforce(0.0);
// dim holds the dimension (e.g., 2 for 2D and 3 for 3D)
// Loop over the shear components (note: the 0 component is the normal component)
// and calculate the shear force.
for (int i = 1; i<dim; ++i)
sforce.rdof(i) = sn_F_.dof(i) - trans.dof(i) * theStiff.dof(i);
// Calculate the trial moment.
DAVect mom = sn_M_ - ang*kRot_;
// If the SOLVE ELASTIC command is given then the
// canFail state is set to FALSE. Otherwise it is always TRUE.
if (state->canFail_) {
bool changed = false;
// Resolve sliding. This is the normal force multiplied by the coefficient of friction.
bool slip_changed = false;
double crit = sn_F_.x() * fric_ + sn_cohres_ * geom.x();
if (sn_state_ != 0) {
if (!sn_S_) {
if (sn_heal_) {
sn_sdisp_.rx() = 0;
crit = sn_F_.x() * sn_fa_ + cohTable_[0].x() * geom.x();
}
} else {
double mm = 0.0;
for (int i=1; i<dim; ++i)
mm += trans[i]*trans[i];
sn_sdisp_.rx() += std::sqrt(mm);
if (sn_cohdc() > std::numeric_limits<double>::epsilon()) {
int ww = -1;
if (sn_sdisp_.x() <= sn_cohdc()) {
for (int i=0; i<cohTable_.size(); ++i) {
if (cohTable_[i].y() >= sn_sdisp_.x()) {
ww = i;
break;
}
}
} else
ww = cohTable_.size() - 1;
if (ww > 0) {
double prevVal = ww == 1 ? 1: cohTable_[ww-1].x() ;//critBreak_ : cohTable_[ww-1].x() + sn_F_.x() * fric_;
double curVal = cohTable_[ww].x();//cohTable_[ww].x() + sn_F_.x() * fric_;
double prevShear = cohTable_[ww-1].y();
double curShear = cohTable_[ww].y();
double slope = (curVal - prevVal)/(curShear - prevShear);
// should go from 0 to 1
double mval = slope * (sn_sdisp_.x() - prevShear) + prevVal;
double fact = std::max(0.,std::min(1.0,1.0 - mval));
assert(fact >= 0 && fact <= 1.0);
double theFric = fric_;
if (sn_fa_)
theFric = sn_fa_ + (fric_ - sn_fa_)*fact;
double theCoh = sn_Coh();
if (theCoh)
theCoh = sn_Coh() + (sn_cohres_ - sn_Coh())*fact;
crit = sn_F_.x() * theFric + theCoh * geom.x();
}
}
}
}
// Resolve sliding.
if (crit < 0)
crit = 0.0;
// The is the magnitude of the shear force.
double sfmag = sforce.mag();
if (sfmag > crit) {
// Lower the shear force to the critical value for sliding.
double rat = crit / sfmag;
sforce *= rat;
if (!sn_S_) {
slip_changed = true;
changed = true;
}
sn_S_ = true;
} else {
if (sn_S_) {
slip_changed = true;
changed = true;
}
sn_S_ = false;
}
if (sn_S_) {
if (sn_dil_ > 0) {
double zdd = sn_dilzero_ != 0 ? sn_dilzero_ : limits<double>::max();
double usm = sn_sdisp_.y();
if (usm < zdd) {
double sInc = 0.0;
for (int i=1; i<dim; ++i)
sInc += trans.dof(i)*trans.dof(i);
sInc = std::sqrt(sInc);
sn_F_.rx() += kTran_ * sn_dil_ * sInc;
}
}
} else {
if (sn_heal_) {
if (shearStrength(geom.x()))
sn_state_ = 6;
}
}
// Resolve bending
bool bslip_changed = false;
crit = sn_bmul_ * 2.1*0.25*sn_F_.x() * br; // Jiang 2015
DAVect test = mom;
#if DIM==3
test.rx() = 0.0;
#endif
double tmag = test.mag();
if (tmag > crit) {
// Lower the bending moment to the critical value for sliding.
double rat = crit / tmag;
test *= rat;
if (!sn_BS_) {
bslip_changed = true;
changed = true;
}
sn_BS_ = true;
}
else {
if (sn_BS_) {
bslip_changed = true;
changed = true;
}
sn_BS_ = false;
}
mom.rz() = test.z();
#if DIM==3
mom.ry() = test.y();
// Resolve twisting
bool tslip_changed = false;
crit = sn_tmul_ * 0.65*fric_*sn_F_.x() * br; // Jiang 2015
tmag = std::abs(mom.x());
if (tmag > crit) {
// Lower the twisting moment to the critical value for sliding.
double rat = crit / tmag;
mom.rx() *= rat;
if (!sn_TS_) {
tslip_changed = true;
changed = true;
}
sn_TS_ = true;
}
else {
if (sn_TS_) {
tslip_changed = true;
changed = true;
}
sn_TS_ = false;
}
#endif
if (changed && cmEvents_[fSlipChange] >= 0) {
qint64 code = 0;
if (slip_changed) {
code = 1;
if (bslip_changed) {
code = 4;
#if DIM==3
if (tslip_changed)
code = 7;
#endif
}
}
else if (bslip_changed) {
code = 2;
#if DIM==3
if (tslip_changed)
code = 6;
#endif
}
#if DIM==3
else if (tslip_changed) {
code = 3;
if (slip_changed)
code = 5;
}
#endif
auto c = state->getContact();
std::vector<fish::Parameter> arg = { fish::Parameter(c->getIThing()),
fish::Parameter(code),
fish::Parameter(sn_S_),
fish::Parameter(sn_BS_)
#ifdef THREED
,fish::Parameter(sn_TS_)
#endif
};
IFishCallList *fi = const_cast<IFishCallList*>(state->getProgram()->findInterface<IFishCallList>());
fi->setCMFishCallArguments(c,arg,cmEvents_[fSlipChange]);
}
}
sn_F_.rx() += porForce;
sn_F_old.rx() += porForce;
// Set the shear components of the total force.
for (int i = 1; i<dim; ++i)
sn_F_.rdof(i) = sforce.dof(i);
// Set the moment.
sn_M_ = mom;
// Account for dashpot forces if the dashpot structure has been defined.
if (dpProps_) {
dpProps_->dp_F_.fill(0.0);
double vcn(0.0), vcs(0.0);
// Calculate the damping coefficients.
vcn = dpProps_->dp_nratio_ * 2.0 * sqrt((state->inertialMass_*(kTran_)));
vcs = dpProps_->dp_sratio_ * 2.0 * sqrt((state->inertialMass_*(kTran_/kRatio_)));
// First damp the shear components
for (int i = 1; i<dim; ++i)
dpProps_->dp_F_.rdof(i) = trans.dof(i) * (-1.0* vcs) / timestep;
// Damp the normal component
dpProps_->dp_F_.rx() -= trans.x() * vcn / timestep;
// Need to change behavior based on the dp_mode.
if ((dpProps_->dp_mode_ == 1 || dpProps_->dp_mode_ == 3)) {
// Limit in tension if not bonded.
if (dpProps_->dp_F_.x() + sn_F_.x() < 0)
dpProps_->dp_F_.rx() = -sn_F_.rx();
}
if (sn_S_ && dpProps_->dp_mode_ > 1) {
// Limit in shear if not sliding.
double dfn = dpProps_->dp_F_.rx();
dpProps_->dp_F_.fill(0.0);
dpProps_->dp_F_.rx() = dfn;
}
}
//Compute energies if energy tracking has been enabled.
if (state->trackEnergy_) {
assert(energies_);
energies_->estrain_ = 0.0;
if (kTran_)
// Calculate the strain energy.
energies_->estrain_ = 0.5*sn_F_.x()*sn_F_.x() / kTran_;
if (kTran_) {
DVect s = sn_F_;
s.rx() = 0.0;
double smag2 = s.mag2();
// Add the shear component of the strain energy.
energies_->estrain_ += 0.5*smag2 / (kTran_/kRatio_);
if (sn_S_) {
// If sliding calculate the slip energy and accumulate it.
sn_F_old.rx() = 0.0;
DVect avg_F_s = (s + sn_F_old)*0.5;
DVect u_s_el = (s - sn_F_old) / (kTran_/kRatio_);
DVect u_s(0.0);
for (int i = 1; i < dim; ++i)
u_s.rdof(i) = trans.dof(i);
energies_->eslip_ -= std::min(0.0, (avg_F_s | (u_s + u_s_el)));
}
}
// Add the bending/twisting resistance energy contributions.
if (kb) {
DAVect tmp = sn_M_;
#ifdef THREED
tmp.rx() = 0.0;
#endif
energies_->estrain_ += 0.5*tmp.mag2() / kb;
if (sn_BS_) {
// accumulate bending slip energy.
DAVect tmp_old = sn_M_old;
#ifdef THREED
tmp_old.rx() = 0.0;
#endif
DAVect avg_M = (tmp + tmp_old)*0.5;
DAVect t_s_el = (tmp - tmp_old) / kb;
energies_->eslip_ -= std::min(0.0, (avg_M | (ang + t_s_el)));
}
}
#ifdef THREED
if (kt) {
double mt = std::abs(sn_M_.x());
energies_->estrain_ += 0.5*mt*mt / kt;
if (sn_TS_) {
// accumulate twisting slip energy.
DAVect tmp(0.0);
DAVect tmp_old(0.0);
tmp.rx() = sn_M_.x();
tmp_old.rx() = sn_M_old.x();
DAVect avg_M = (tmp + tmp_old)*0.5;
DAVect t_s_el = (tmp - tmp_old) / kt;
energies_->eslip_ -= std::min(0.0, (avg_M | (ang + t_s_el)));
}
}
#endif
if (dpProps_) {
// Calculate damping energy (accumulated) if the dashpots are active.
energies_->edashpot_ -= dpProps_->dp_F_ | trans;
}
}
// This is just a sanity check to ensure, in debug mode, that the force/moment aren't wonky.
assert(sn_F_ == sn_F_);
assert(fictForce_ == fictForce_);
assert(sn_M_ == sn_M_);
return true;
}
void ContactModelRBSN::setForce(const DVect &v,IContact *c) {
sn_F_ = v;
fictForce_ = DVect(0.0);
forceSet_ = true;
if (v.x() > 0)
rgap_ = c->getGap() + v.x() / kTran_;
}
void ContactModelRBSN::propagateStateInformation(IContactModelMechanical* old,const CAxes &oldSystem,const CAxes &newSystem) {
// Only called for contacts with wall facets when the wall resolution scheme
// is set to full!
// Only do something if the contact model is of the same type
if (old->getContactModel()->getName().compare("springnetwork",Qt::CaseInsensitive) == 0 && !isBonded()) {
ContactModelRBSN *oldCm = (ContactModelRBSN *)old;
#ifdef THREED
// Need to rotate just the shear component from oldSystem to newSystem
// Step 1 - rotate oldSystem so that the normal is the same as the normal of newSystem
DVect axis = oldSystem.e1() & newSystem.e1();
double c, ang, s;
DVect re2;
if (!checktol(axis.abs().maxComp(),0.0,1.0,1000)) {
axis = axis.unit();
c = oldSystem.e1()|newSystem.e1();
if (c > 0)
c = std::min(c,1.0);
else
c = std::max(c,-1.0);
ang = acos(c);
s = sin(ang);
double t = 1. - c;
DMatrix<3,3> rm;
rm.get(0,0) = t*axis.x()*axis.x() + c;
rm.get(0,1) = t*axis.x()*axis.y() - axis.z()*s;
rm.get(0,2) = t*axis.x()*axis.z() + axis.y()*s;
rm.get(1,0) = t*axis.x()*axis.y() + axis.z()*s;
rm.get(1,1) = t*axis.y()*axis.y() + c;
rm.get(1,2) = t*axis.y()*axis.z() - axis.x()*s;
rm.get(2,0) = t*axis.x()*axis.z() - axis.y()*s;
rm.get(2,1) = t*axis.y()*axis.z() + axis.x()*s;
rm.get(2,2) = t*axis.z()*axis.z() + c;
re2 = rm*oldSystem.e2();
}
else
re2 = oldSystem.e2();
// Step 2 - get the angle between the oldSystem rotated shear and newSystem shear
axis = re2 & newSystem.e2();
DVect2 tpf;
DVect2 tpm;
DMatrix<2,2> m;
if (!checktol(axis.abs().maxComp(),0.0,1.0,1000)) {
axis = axis.unit();
c = re2|newSystem.e2();
if (c > 0)
c = std::min(c,1.0);
else
c = std::max(c,-1.0);
ang = acos(c);
if (!checktol(axis.x(),newSystem.e1().x(),1.0,100))
ang *= -1;
s = sin(ang);
m.get(0,0) = c;
m.get(1,0) = s;
m.get(0,1) = -m.get(1,0);
m.get(1,1) = m.get(0,0);
tpf = m*DVect2(oldCm->sn_F_.y(),oldCm->sn_F_.z());
tpm = m*DVect2(oldCm->sn_M_.y(),oldCm->sn_M_.z());
} else {
m.get(0,0) = 1.;
m.get(0,1) = 0.;
m.get(1,0) = 0.;
m.get(1,1) = 1.;
tpf = DVect2(oldCm->sn_F_.y(),oldCm->sn_F_.z());
tpm = DVect2(oldCm->sn_M_.y(),oldCm->sn_M_.z());
}
DVect pforce = DVect(0,tpf.x(),tpf.y());
DVect pm = DVect(0,tpm.x(),tpm.y());
#else
oldSystem;
newSystem;
DVect pforce = DVect(0,oldCm->sn_F_.y());
DVect pm = DVect(0,oldCm->sn_M_.y());
#endif
for (int i=1; i<dim; ++i)
sn_F_.rdof(i) += pforce.dof(i);
if (sn_mode_ && oldCm->sn_mode_)
sn_F_.rx() = oldCm->sn_F_.x();
oldCm->sn_F_ = DVect(0.0);
oldCm->sn_M_ = DAVect(0.0);
if (dpProps_ && oldCm->dpProps_) {
#ifdef THREED
tpf = m*DVect2(oldCm->dpProps_->dp_F_.y(),oldCm->dpProps_->dp_F_.z());
pforce = DVect(oldCm->dpProps_->dp_F_.x(),tpf.x(),tpf.y());
#else
pforce = oldCm->dpProps_->dp_F_;
#endif
dpProps_->dp_F_ += pforce;
oldCm->dpProps_->dp_F_ = DVect(0.0);
}
if(oldCm->getEnergyActivated()) {
activateEnergy();
energies_->estrain_ = oldCm->energies_->estrain_;
energies_->edashpot_ = oldCm->energies_->edashpot_;
energies_->eslip_ = oldCm->energies_->eslip_;
oldCm->energies_->estrain_ = 0.0;
oldCm->energies_->edashpot_ = 0.0;
oldCm->energies_->eslip_ = 0.0;
}
rgap_ = oldCm->rgap_;
}
assert(sn_F_ == sn_F_);
}
void ContactModelRBSN::setNonForcePropsFrom(IContactModel *old) {
// Only called for contacts with wall facets when the wall resolution scheme
// is set to full!
// Only do something if the contact model is of the same type
if (old->getName().compare("springnetwork",Qt::CaseInsensitive) == 0 && !isBonded()) {
ContactModelRBSN *oldCm = (ContactModelRBSN *)old;
fictForce_ = oldCm->fictForce_;
sn_F_ = oldCm->sn_F_;
sn_sdisp_ = oldCm->sn_sdisp_;
sn_M_ = oldCm->sn_M_;
kRot_ = oldCm->kRot_;
kTran_ = oldCm->kTran_;
kRatio_ = oldCm->kRatio_;
E_ = oldCm->E_;
poisson_ = oldCm->poisson_;
fric_ = oldCm->fric_;
sn_bmul_ = oldCm->sn_bmul_;
sn_tmul_ = oldCm->sn_tmul_;
sn_rmul_ = oldCm->sn_rmul_;
userArea_ = oldCm->userArea_;
rgap_ = oldCm->rgap_;
sn_fa_ = oldCm->sn_fa_;
sn_mcf_ = oldCm->sn_mcf_;
sn_dil_ = oldCm->sn_dil_;
sn_dilzero_ = oldCm->sn_dilzero_;
transTen_ = oldCm->transTen_;
sn_elong_ = oldCm->sn_elong_;
sn_ndisp_ = oldCm->sn_ndisp_;
sn_mode_ = oldCm->sn_mode_;
sn_state_ = oldCm->sn_state_;
poisOffDiag_ = oldCm->poisOffDiag_;
sn_S_ = oldCm->sn_S_;
sn_BS_ = oldCm->sn_BS_;
sn_TS_ = oldCm->sn_TS_;
forceSet_ = oldCm->forceSet_;
sn_heal_ = oldCm->sn_heal_;
tenTable_ = oldCm->tenTable_;
cohTable_ = oldCm->cohTable_;
if (oldCm->hasDamping()) {
if (!dpProps_)
dpProps_ = NEWC(dpProps());
dp_nratio(oldCm->dp_nratio());
dp_sratio(oldCm->dp_sratio());
dp_mode(oldCm->dp_mode());
dp_F(oldCm->dp_F());
}
}
}
DVect ContactModelRBSN::getForce(const IContactMechanical *) const {
DVect ret(sn_F_);
ret += fictForce_;
if (dpProps_)
ret += dpProps_->dp_F_;
return ret;
}
DAVect ContactModelRBSN::getMomentOn1(const IContactMechanical *c) const {
DVect force = getForce(c);
DAVect ret(sn_M_);
c->updateResultingTorqueOn1Local(force,&ret);
return ret;
}
DAVect ContactModelRBSN::getMomentOn2(const IContactMechanical *c) const {
DVect force = getForce(c);
DAVect ret(sn_M_);
c->updateResultingTorqueOn2Local(force,&ret);
return ret;
}
DVect3 ContactModelRBSN::computeGeomData(const IContactMechanical *c) const {
double Cmax1 = c->getEnd1Curvature().y();
double Cmax2 = c->getEnd2Curvature().y();
double br = sn_rmul_ * 1.0 / std::max(Cmax1, Cmax2);
if (userArea_)
#ifdef THREED
br = std::sqrt(userArea_ / dPi);
#else
br = userArea_ / 2.0;
#endif
double br2 = br * br;
#ifdef THREED
double area = dPi * br2;
double bi = 0.25*area*br2;
#else
double area = 2.0*br;
double bi = 2.0*br*br2 / 3.0;
#endif
return DVect3(area, bi, br);
}
DVect2 ContactModelRBSN::SMax(const IContactMechanical *c) const {
DVect3 data = computeGeomData(c);
double area = data.x();
double bi = data.y();
double br = data.z();
/* maximum stresses */
//double nsmax0 = -(totalForce.x() / area) + sn_mcf_* sqrt(sn_M_.y()*sn_M_.y() + sn_M_.z()*sn_M_.z()) * br / bi;
double dbend = sqrt(sn_M_.y()*sn_M_.y() + sn_M_.z()*sn_M_.z());
dbend *= sn_mcf_;
double dtwist = sn_M_.x();
DVect bfs(sn_F_);
bfs.rx() = 0.0;
double dbfs = bfs.mag();
double nsmax = -((sn_F_.x()+fictForce_.x()) / area) + dbend * br / bi;
double ssmax = dbfs / area + std::abs(dtwist) * 0.5* br / bi;
return DVect2(nsmax, ssmax);
}
double ContactModelRBSN::shearStrength(const double &area) const {
double sig = -1.0*(sn_F_.x() + fictForce_.x()) / area;
double nstr = (sn_state_ > 2 && sn_state_ != 6) ? tenTable_[0].x() : 0.0;
return sig <= nstr ? cohTable_[0].x() - sn_fa_*sig
: cohTable_[0].x() - sn_fa_*nstr;
}
double ContactModelRBSN::strainEnergy(double kn,double ks,double kb,double kt) const {
double ret(0.0);
if (kn)
ret = 0.5 * (sn_F_.x()+fictForce_.x()) * (sn_F_.x()+fictForce_.x()) / kn;
if (ks) {
DVect tmp = sn_F_ + fictForce_;
tmp.rx() = 0.0;
double smag2 = tmp.mag2();
ret += 0.5 * smag2 / ks;
}
if (kt)
ret += 0.5 * sn_M_.x() * sn_M_.x() / kt;
if (kb) {
DAVect tmp = sn_M_;
#ifdef THREED
tmp.rx() = 0.0;
double smag2 = tmp.mag2();
#else
double smag2 = tmp.z() * tmp.z();
#endif
ret += 0.5 * smag2 / kb;
}
return ret;
}
} // namespace cmodelsxd
// EoF
|
Was this helpful? ... | 3DEC © 2019, Itasca | Updated: Feb 25, 2024 |