structure shell property command
Syntax
- structure shell property keyword <range>
Primary keywords:
density thickness thermal-expansion anisotropic-membrane anisotropic-bending anisotropic-both material-x isotropic orthotropic-membrane orthotropic-bending orthotropic-both
Assigns a property to elements in the range. The element can have isotropic, orthotropic or anisotropic elastic material properties. The following properties are available:
- density f
density (needed if dynamic mode or gravity is active)
- thickness f
shell thickness
- thermal-expansion f
thermal expansion coefficient
- anisotropic-membrane f1 f2 f3 f4 f5 f6
anisotropic membrane material properties {c’11, c’12, c’13, c’22, c’23, c’33} [F/L2], which define membrane material-stiffness matrices [E’m] and [E’b], respectively, in the material directions x’, y’, z’.
- anisotropic-bending f1 f2 f3 f4 f5 f6
anisotropic bending material properties {c’11, c’12, c’13, c’22, c’23, c’33} [F/L2], which define bending material-stiffness matrices [E’m] and [E’b], respectively, in the material directions x’, y’, z’.
- anisotropic-both f1 f2 f3 f4 f5 f6
anisotropic membrane and bending material properties {c’11, c’12, c’13, c’22, c’23, c’33} [F/L2], which define membrane and bending material-stiffness matrices [E’m] and [E’b], respectively, in the material directions x’, y’, z’.
- material-x v
Specify the vector (Xx, Xy, Xz) whose projection onto the shell surface defines the x’-axis of the material coordinate system. The material directions correspond with the principal directions of orthotropy (for more information, see below).
- isotropic f1 f2
isotropic material properties: E and v, where E is Young’s modulus [F/L2] and v is Poisson’s ratio
- orthotropic-membrane f1 f2 f3 f4
orthotropic membrane material properties {c’11, c’12, c’22, c’33} [F/L2], which define membrane material-stiffness matrices [E’m] and [E’b], respectively, in the material directions x’, y’, z’.
- orthotropic-bending f1 f2 f3 f4
orthotropic bending material properties { c’11, c’12, c’22, c’33 } [F/L2], which define bending material-stiffness matrices [ E’m ] and [ E’b ], respectively, in the material directions x’, y’, z’.
- orthotropic-both f1 f2 f3 f4
orthotropic membrane and bending material properties {c’11, c’12, c’22, c’33} [F/L2], which define membrane and bending material-stiffness matrices [E’m] and [E’b], respectively, in the material directions x’, y’, z’.
Further information on the material-x keyword
The material coordinate system, xʹ, yʹ, zʹ, defines the orthotropic and anisotropic properties and satisfies the following conditions: 1) xʹ is the projection of the given vector onto the surface; 2) zʹ is normal to the surface and aligned with the z-axis of the shell-type element coordinate system; and 3) yʹ = zʹ × xʹ. The material coordinate system moves with the shell surface during large-strain updates, which means that the relative orientations of this system and the element local system do not change (the angle β in this figure does not change). If the material-x vector is not specified, then the xʹ-axis will be aligned with the x-axis of the structural element local coordinate system.
The material coordinate system can be queried with the command
structure shell list property material-x
and the FISH functionstruct.shell.beta
. It can be visualized with the Structural Geometry plot item by choosing the corresponding System attribute.
Was this helpful? ... | PFC 6.0 © 2019, Itasca | Updated: Nov 19, 2021 |