Linear Contact Bond Model Implementation

See this file for the documentation of this contact model.

contactmodellinearcbond.h

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
#pragma once
// contactmodellinearcbond.h

#include "contactmodel/src/contactmodelmechanical.h"

#ifdef LINEARCBOND_LIB
#  define LINEARCBOND_EXPORT EXPORT_TAG
#elif defined(NO_MODEL_IMPORT)
#  define LINEARCBOND_EXPORT
#else
#  define LINEARCBOND_EXPORT IMPORT_TAG
#endif

namespace cmodelsxd {
    using namespace itasca;

    class ContactModelLinearCBond : public ContactModelMechanical {
    public:
        LINEARCBOND_EXPORT ContactModelLinearCBond();
        LINEARCBOND_EXPORT virtual ~ContactModelLinearCBond();
        virtual void                     copy(const ContactModel *c);
        virtual void                     archive(ArchiveStream &); 

        virtual QString  getName() const { return "linearcbond"; }
        virtual void     setIndex(int i) { index_=i;}
        virtual int      getIndex() const {return index_;}

        enum PropertyKeys { 
              kwKn=1
            , kwKs                            
            , kwFric   
            , kwLinF
            , kwLinS
            , kwLinMode
            , kwRGap
            , kwEmod
            , kwKRatio
            , kwDpNRatio 
            , kwDpSRatio
            , kwDpMode 
            , kwDpF
            , kwCbState
            , kwCbTenF                        
            , kwCbShearF 
            , kwCbTStr                        
            , kwCbSStr 
            , kwUserArea
        };
         
        virtual QString  getProperties() const {
            return "kn"
                   ",ks"
                   ",fric"
                   ",lin_force"
                   ",lin_slip"
                   ",lin_mode"
                   ",rgap"
                   ",emod"
                   ",kratio"
                   ",dp_nratio"
                   ",dp_sratio"
                   ",dp_mode"
                   ",dp_force"
                   ",cb_state"
                   ",cb_tenf"
                   ",cb_shearf"
                   ",cb_tens"
                   ",cb_shears"
                   ",user_area";
        }

        enum EnergyKeys { kwEStrain=1,kwESlip,kwEDashpot};
        virtual QString  getEnergies() const { return "energy-strain,energy-slip,energy-dashpot";}
        virtual double   getEnergy(uint i) const;           // Base 1
        virtual bool     getEnergyAccumulate(uint i) const; // Base 1
        virtual void     setEnergy(uint i,const double &d); // Base 1
        virtual void     activateEnergy() { if (energies_) return; energies_ = NEWC(Energies());}
        virtual bool     getEnergyActivated() const {return (energies_ !=0);}

        enum FishCallEvents {fActivated=0,fBondBreak, fSlipChange };
        virtual QString  getFishCallEvents() const { return "contact_activated,bond_break,slip_change"; }
        virtual QVariant getProperty(uint i,const IContact *) const;
        virtual bool     getPropertyGlobal(uint i) const;
        virtual bool     setProperty(uint i,const QVariant &v,IContact *);
        virtual bool     getPropertyReadOnly(uint i) const;

        virtual bool     supportsInheritance(uint i) const; 
        virtual bool     getInheritance(uint i) const { assert(i<32); quint32 mask = to<quint32>(1 << i);  return (inheritanceField_ & mask) ? true : false; }
        virtual void     setInheritance(uint i,bool b) { assert(i<32); quint32 mask = to<quint32>(1 << i);  if (b) inheritanceField_ |= mask;  else inheritanceField_ &= ~mask; }

        enum MethodKeys { 
              kwDeformability=1
            , kwCbBond 
            , kwCbStrength
            , kwCbUnbond
            , kwArea
        };

        virtual QString  getMethods() const { 
            return "deformability"
                   ",bond" 
                   ",cb_strength"
                   ",unbond"
                   ",area";
        }

        virtual QString  getMethodArguments(uint i) const; 

        virtual bool     setMethod(uint i,const QVector<QVariant> &vl,IContact *con=0); // Base 1 - returns true if timestep contributions need to be updated

        virtual uint     getMinorVersion() const;

        virtual bool    validate(ContactModelMechanicalState *state,const double &timestep);
        virtual bool    endPropertyUpdated(const QString &name,const IContactMechanical *c);
        virtual bool    forceDisplacementLaw(ContactModelMechanicalState *state,const double &timestep);
        virtual DVect2  getEffectiveTranslationalStiffness() const { DVect2 ret = effectiveTranslationalStiffness_; return ret;}
        virtual DAVect  getEffectiveRotationalStiffness() const { return DAVect(0.0);}

        virtual ContactModelLinearCBond *clone() const { return NEWC(ContactModelLinearCBond()); }
        virtual double              getActivityDistance() const {return rgap_;}
        virtual bool                isOKToDelete() const { return !isBonded(); }
        virtual void                resetForcesAndMoments() { lin_F(DVect(0.0)); dp_F(DVect(0.0));  if (energies_) energies_->estrain_ = 0.0; }
        virtual void                setForce(const DVect &v,IContact *c);
        virtual void                setArea(const double &d) { userArea_ = d; }

        virtual bool     checkActivity(const double &gap) { return (gap <= rgap_ || isBonded()); }

        virtual bool     isSliding() const { return lin_S_; }
        virtual bool     isBonded() const { return (cb_state_==3); }
        virtual void     propagateStateInformation(IContactModelMechanical* oldCm,const CAxes &oldSystem=CAxes(),const CAxes &newSystem=CAxes());
        virtual void     setNonForcePropsFrom(IContactModel *oldCM);

        const double & kn() const {return kn_;}
        void           kn(const double &d) {kn_=d;}
        const double & ks() const {return ks_;}
        void           ks(const double &d) {ks_=d;}
        const double & fric() const {return fric_;}
        void           fric(const double &d) {fric_=d;}
        const DVect &  lin_F() const {return lin_F_;}
        void           lin_F(const DVect &f) { lin_F_=f;}
        bool           lin_S() const {return lin_S_;}
        void           lin_S(bool b) { lin_S_=b;}
        uint           lin_mode() const {return lin_mode_;}
        void           lin_mode(uint i) { lin_mode_=i;}
        const double & rgap() const {return rgap_;}
        void           rgap(const double &d) {rgap_=d;}
        uint           cb_state() const {return cb_state_;}
        void           cb_state(uint b) { cb_state_=b;}
        const double & cb_tenF() const {return cb_tenF_;}
        void           cb_tenF(const double &d) {cb_tenF_=d;}
        const double & cb_shearF() const {return cb_shearF_;}
        void           cb_shearF(const double &d) {cb_shearF_=d;}

        bool     hasDamping() const {return dpProps_ ? true : false;}
        double   dp_nratio() const {return (hasDamping() ? (dpProps_->dp_nratio_) : 0.0);}
        void     dp_nratio(const double &d) { if(!hasDamping()) return; dpProps_->dp_nratio_=d;}
        double   dp_sratio() const {return hasDamping() ? dpProps_->dp_sratio_: 0.0;}
        void     dp_sratio(const double &d) { if(!hasDamping()) return; dpProps_->dp_sratio_=d;}
        int      dp_mode() const {return hasDamping() ? dpProps_->dp_mode_: -1;}
        void     dp_mode(int i) { if(!hasDamping()) return; dpProps_->dp_mode_=i;}
        DVect    dp_F() const {return hasDamping() ? dpProps_->dp_F_: DVect(0.0);}
        void     dp_F(const DVect &f) { if(!hasDamping()) return; dpProps_->dp_F_=f;}

        bool    hasEnergies() const {return energies_ ? true:false;}
        double  estrain() const {return hasEnergies() ? energies_->estrain_: 0.0;}
        void    estrain(const double &d) { if(!hasEnergies()) return; energies_->estrain_=d;}
        double  eslip() const {return hasEnergies() ? energies_->eslip_: 0.0;}
        void    eslip(const double &d) { if(!hasEnergies()) return; energies_->eslip_=d;}
        double  edashpot() const {return hasEnergies() ? energies_->edashpot_: 0.0;}
        void    edashpot(const double &d) { if(!hasEnergies()) return; energies_->edashpot_=d;}

        uint inheritanceField() const {return inheritanceField_;}
        void inheritanceField(uint i) {inheritanceField_ = i;}

        const DVect2 & effectiveTranslationalStiffness()  const          {return effectiveTranslationalStiffness_;}
        void           effectiveTranslationalStiffness(const DVect2 &v ) {effectiveTranslationalStiffness_=v;}

        /// Return the total force that the contact model holds.
        virtual DVect    getForce(const IContactMechanical *) const;

        /// Return the total moment on 1 that the contact model holds
        virtual DAVect   getMomentOn1(const IContactMechanical *) const;

        /// Return the total moment on 1 that the contact model holds
        virtual DAVect   getMomentOn2(const IContactMechanical *) const;

    private:
        static int index_;

        struct Energies {
            Energies() : estrain_(0.0), eslip_(0.0),edashpot_(0.0) {}
            double estrain_;  // elastic energy stored in contact 
            double eslip_;    // work dissipated by friction 
            double edashpot_;    // work dissipated by dashpots
        };

        struct dpProps {
            dpProps() : dp_nratio_(0.0), dp_sratio_(0.0), dp_mode_(0), dp_F_(DVect(0.0)) {}
            double dp_nratio_;     // normal viscous critical damping ratio
            double dp_sratio_;     // shear  viscous critical damping ratio
            int    dp_mode_;      // for viscous mode (0-4) 0 = dashpots, 1 = tensile limit, 2 = shear limit, 3 = limit both
            DVect  dp_F_;  // Force in the dashpots
        };

        bool   updateKn(const IContactMechanical *con);
        bool   updateKs(const IContactMechanical *con);
        bool   updateFric(const IContactMechanical *con);

        void   updateEffectiveStiffness(ContactModelMechanicalState *state);

        void   setDampCoefficients(const double &mass,double *vcn,double *vcs);

        // inheritance fields
        quint32 inheritanceField_;

        // linear model
        double      kn_;        // normal stiffness
        double      ks_;        // shear stiffness
        double      fric_;      // Coulomb friction coefficient
        DVect       lin_F_;     // Force carried in the linear model
        bool        lin_S_;     // current slip state
        uint        lin_mode_;  // specifies incremental or absolute for the the linear part 
        double      rgap_;      // reference gap 

        uint        cb_state_;  // Bond state - 0 (NBNF), 1 (NBFT), 2 (NBFS), 3 (B)
        double      cb_tenF_;   
        double      cb_shearF_;

        dpProps *   dpProps_;    // The viscous properties

        double      userArea_;   // Area as specified by the user 

        Energies *   energies_;    // energies

        DVect2  effectiveTranslationalStiffness_;
         
    };
} // namespace itascaxd
// EoF

Top

contactmodellinearcbond.cpp

   1
   2
   3
   4
   5
   6
   7
   8
   9
  10
  11
  12
  13
  14
  15
  16
  17
  18
  19
  20
  21
  22
  23
  24
  25
  26
  27
  28
  29
  30
  31
  32
  33
  34
  35
  36
  37
  38
  39
  40
  41
  42
  43
  44
  45
  46
  47
  48
  49
  50
  51
  52
  53
  54
  55
  56
  57
  58
  59
  60
  61
  62
  63
  64
  65
  66
  67
  68
  69
  70
  71
  72
  73
  74
  75
  76
  77
  78
  79
  80
  81
  82
  83
  84
  85
  86
  87
  88
  89
  90
  91
  92
  93
  94
  95
  96
  97
  98
  99
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 162
 163
 164
 165
 166
 167
 168
 169
 170
 171
 172
 173
 174
 175
 176
 177
 178
 179
 180
 181
 182
 183
 184
 185
 186
 187
 188
 189
 190
 191
 192
 193
 194
 195
 196
 197
 198
 199
 200
 201
 202
 203
 204
 205
 206
 207
 208
 209
 210
 211
 212
 213
 214
 215
 216
 217
 218
 219
 220
 221
 222
 223
 224
 225
 226
 227
 228
 229
 230
 231
 232
 233
 234
 235
 236
 237
 238
 239
 240
 241
 242
 243
 244
 245
 246
 247
 248
 249
 250
 251
 252
 253
 254
 255
 256
 257
 258
 259
 260
 261
 262
 263
 264
 265
 266
 267
 268
 269
 270
 271
 272
 273
 274
 275
 276
 277
 278
 279
 280
 281
 282
 283
 284
 285
 286
 287
 288
 289
 290
 291
 292
 293
 294
 295
 296
 297
 298
 299
 300
 301
 302
 303
 304
 305
 306
 307
 308
 309
 310
 311
 312
 313
 314
 315
 316
 317
 318
 319
 320
 321
 322
 323
 324
 325
 326
 327
 328
 329
 330
 331
 332
 333
 334
 335
 336
 337
 338
 339
 340
 341
 342
 343
 344
 345
 346
 347
 348
 349
 350
 351
 352
 353
 354
 355
 356
 357
 358
 359
 360
 361
 362
 363
 364
 365
 366
 367
 368
 369
 370
 371
 372
 373
 374
 375
 376
 377
 378
 379
 380
 381
 382
 383
 384
 385
 386
 387
 388
 389
 390
 391
 392
 393
 394
 395
 396
 397
 398
 399
 400
 401
 402
 403
 404
 405
 406
 407
 408
 409
 410
 411
 412
 413
 414
 415
 416
 417
 418
 419
 420
 421
 422
 423
 424
 425
 426
 427
 428
 429
 430
 431
 432
 433
 434
 435
 436
 437
 438
 439
 440
 441
 442
 443
 444
 445
 446
 447
 448
 449
 450
 451
 452
 453
 454
 455
 456
 457
 458
 459
 460
 461
 462
 463
 464
 465
 466
 467
 468
 469
 470
 471
 472
 473
 474
 475
 476
 477
 478
 479
 480
 481
 482
 483
 484
 485
 486
 487
 488
 489
 490
 491
 492
 493
 494
 495
 496
 497
 498
 499
 500
 501
 502
 503
 504
 505
 506
 507
 508
 509
 510
 511
 512
 513
 514
 515
 516
 517
 518
 519
 520
 521
 522
 523
 524
 525
 526
 527
 528
 529
 530
 531
 532
 533
 534
 535
 536
 537
 538
 539
 540
 541
 542
 543
 544
 545
 546
 547
 548
 549
 550
 551
 552
 553
 554
 555
 556
 557
 558
 559
 560
 561
 562
 563
 564
 565
 566
 567
 568
 569
 570
 571
 572
 573
 574
 575
 576
 577
 578
 579
 580
 581
 582
 583
 584
 585
 586
 587
 588
 589
 590
 591
 592
 593
 594
 595
 596
 597
 598
 599
 600
 601
 602
 603
 604
 605
 606
 607
 608
 609
 610
 611
 612
 613
 614
 615
 616
 617
 618
 619
 620
 621
 622
 623
 624
 625
 626
 627
 628
 629
 630
 631
 632
 633
 634
 635
 636
 637
 638
 639
 640
 641
 642
 643
 644
 645
 646
 647
 648
 649
 650
 651
 652
 653
 654
 655
 656
 657
 658
 659
 660
 661
 662
 663
 664
 665
 666
 667
 668
 669
 670
 671
 672
 673
 674
 675
 676
 677
 678
 679
 680
 681
 682
 683
 684
 685
 686
 687
 688
 689
 690
 691
 692
 693
 694
 695
 696
 697
 698
 699
 700
 701
 702
 703
 704
 705
 706
 707
 708
 709
 710
 711
 712
 713
 714
 715
 716
 717
 718
 719
 720
 721
 722
 723
 724
 725
 726
 727
 728
 729
 730
 731
 732
 733
 734
 735
 736
 737
 738
 739
 740
 741
 742
 743
 744
 745
 746
 747
 748
 749
 750
 751
 752
 753
 754
 755
 756
 757
 758
 759
 760
 761
 762
 763
 764
 765
 766
 767
 768
 769
 770
 771
 772
 773
 774
 775
 776
 777
 778
 779
 780
 781
 782
 783
 784
 785
 786
 787
 788
 789
 790
 791
 792
 793
 794
 795
 796
 797
 798
 799
 800
 801
 802
 803
 804
 805
 806
 807
 808
 809
 810
 811
 812
 813
 814
 815
 816
 817
 818
 819
 820
 821
 822
 823
 824
 825
 826
 827
 828
 829
 830
 831
 832
 833
 834
 835
 836
 837
 838
 839
 840
 841
 842
 843
 844
 845
 846
 847
 848
 849
 850
 851
 852
 853
 854
 855
 856
 857
 858
 859
 860
 861
 862
 863
 864
 865
 866
 867
 868
 869
 870
 871
 872
 873
 874
 875
 876
 877
 878
 879
 880
 881
 882
 883
 884
 885
 886
 887
 888
 889
 890
 891
 892
 893
 894
 895
 896
 897
 898
 899
 900
 901
 902
 903
 904
 905
 906
 907
 908
 909
 910
 911
 912
 913
 914
 915
 916
 917
 918
 919
 920
 921
 922
 923
 924
 925
 926
 927
 928
 929
 930
 931
 932
 933
 934
 935
 936
 937
 938
 939
 940
 941
 942
 943
 944
 945
 946
 947
 948
 949
 950
 951
 952
 953
 954
 955
 956
 957
 958
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971
 972
 973
 974
 975
 976
 977
 978
 979
 980
 981
 982
 983
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
// contactmodellinearcbond.cpp
#include "contactmodellinearcbond.h"

#include "module/interface/icontactmechanical.h"
#include "module/interface/icontact.h"

#include "module/interface/ipiecemechanical.h"
#include "module/interface/ipiece.h"
#include "../version.txt"
#include "base/src/basetoqt.h"

#include "module/interface/ifishcalllist.h"
#include "utility/src/tptr.h"
#include "shared/src/mathutil.h"

#include "kernel/interface/iprogram.h"
#include "module/interface/icontactthermal.h"
#include "contactmodel/src/contactmodelthermal.h"

#ifdef LINEARCBOND_LIB
  int __stdcall DllMain(void *,unsigned, void *)
  {
    return 1;
  }

  extern "C" EXPORT_TAG const char *getName() 
  {
#if DIM==3
    return "contactmodelmechanical3dlinearcbond";
#else
    return "contactmodelmechanical2dlinearcbond";
#endif
  }

  extern "C" EXPORT_TAG unsigned getMajorVersion()
  {
    return MAJOR_VERSION;
  }

  extern "C" EXPORT_TAG unsigned getMinorVersion()
  {
    return MINOR_VERSION;
  }

  extern "C" EXPORT_TAG void *createInstance() 
  {
    cmodelsxd::ContactModelLinearCBond *m = NEWC(cmodelsxd::ContactModelLinearCBond());
    return (void *)m;
  }
#endif // LINEARCBOND_EXPORTS

namespace cmodelsxd {
    static const quint32 linKnMask      = 0x00002; // Base 1!
    static const quint32 linKsMask      = 0x00004;
    static const quint32 linFricMask    = 0x00008;

    using namespace itasca;

    int ContactModelLinearCBond::index_ = -1;
    UInt ContactModelLinearCBond::getMinorVersion() const { return MINOR_VERSION;}

    ContactModelLinearCBond::ContactModelLinearCBond() : inheritanceField_(linKnMask|linKsMask|linFricMask) 
                                                        , kn_(0.0)
                                                        , ks_(0.0)
                                                        , fric_(0.0)
                                                        , lin_F_(DVect(0.0))
                                                        , lin_S_(false)
                                                        , lin_mode_(0)
                                                        , rgap_(0.0)
                                                        , cb_state_(0)
                                                        , cb_tenF_(0.0)
                                                        , cb_shearF_(0.0)
                                                        , dpProps_(0)
                                                        , userArea_(0)
                                                        , energies_(0)
                                                        , effectiveTranslationalStiffness_(DVect2(0.0)) {
//    setFromParent(ContactModelMechanicalList::instance()->find(getName()));
    }

    ContactModelLinearCBond::~ContactModelLinearCBond() {
        if (dpProps_)
            delete dpProps_;
        if (energies_)
            delete energies_;
    }

    void ContactModelLinearCBond::archive(ArchiveStream &stream) {
        stream & kn_;
        stream & ks_;
        stream & fric_;
        stream & lin_F_;
        stream & lin_S_;
        stream & lin_mode_;
        stream & cb_state_;
        stream & cb_tenF_;  
        stream & cb_shearF_;

        if (stream.getArchiveState()==ArchiveStream::Save) {
            bool b = false;
            if (dpProps_) {
                b = true;
                stream & b;
                stream & dpProps_->dp_nratio_; 
                stream & dpProps_->dp_sratio_; 
                stream & dpProps_->dp_mode_; 
                stream & dpProps_->dp_F_; 
            }
            else
                stream & b;

            b = false;
            if (energies_) {
                b = true;
                stream & b;
                stream & energies_->estrain_;
                stream & energies_->eslip_;
                stream & energies_->edashpot_;
            }
            else
                stream & b;
        } else {
            bool b(false);
            stream & b;
            if (b) {
                if (!dpProps_)
                    dpProps_ = NEWC(dpProps());
                stream & dpProps_->dp_nratio_; 
                stream & dpProps_->dp_sratio_; 
                stream & dpProps_->dp_mode_; 
                stream & dpProps_->dp_F_; 
            }
            stream & b;
            if (b) {
                if (!energies_)
                    energies_ = NEWC(Energies());
                stream & energies_->estrain_;
                stream & energies_->eslip_;
                stream & energies_->edashpot_;
            }
        }

        stream & inheritanceField_;
        stream & effectiveTranslationalStiffness_;

        if (stream.getArchiveState()==ArchiveStream::Save || stream.getRestoreVersion() == getMinorVersion())
            stream & rgap_;

        if (stream.getArchiveState() == ArchiveStream::Save || stream.getRestoreVersion() > 2) 
            stream & userArea_;
    }

    void ContactModelLinearCBond::copy(const ContactModel *cm) {
        ContactModelMechanical::copy(cm);
        const ContactModelLinearCBond *in = dynamic_cast<const ContactModelLinearCBond*>(cm);
        if (!in) throw std::runtime_error("Internal error: contact model dynamic cast failed.");
        kn(in->kn());
        ks(in->ks());
        fric(in->fric());
        lin_F(in->lin_F());
        lin_S(in->lin_S());
        lin_mode(in->lin_mode());
        rgap(in->rgap());
        cb_state(in->cb_state());
        cb_tenF(in->cb_tenF());
        cb_shearF(in->cb_shearF());
        if (in->hasDamping()) {
            if (!dpProps_)
                dpProps_ = NEWC(dpProps());
            dp_nratio(in->dp_nratio()); 
            dp_sratio(in->dp_sratio()); 
            dp_mode(in->dp_mode()); 
            dp_F(in->dp_F()); 
        }
        if (in->hasEnergies()) {
            if (!energies_)
                energies_ = NEWC(Energies());
            estrain(in->estrain());
            eslip(in->eslip());
            edashpot(in->edashpot());
        }
        userArea_ = in->userArea_;
        inheritanceField(in->inheritanceField());
        effectiveTranslationalStiffness(in->effectiveTranslationalStiffness());
    }

    QVariant ContactModelLinearCBond::getProperty(uint i,const IContact *con) const {
        QVariant var;
        bool nstr = false;
        switch (i) {
        case kwKn:        return kn_;
        case kwKs:        return ks_;
        case kwFric:      return fric_;
        case kwLinF:      var.setValue(lin_F_); return var;
        case kwLinS:      return lin_S_;
        case kwLinMode:   return lin_mode_;
        case kwRGap:      return rgap_;
        case kwEmod:      {
                            const IContactMechanical *c(convert_getcast<IContactMechanical>(con));
                            if (c ==nullptr) return 0.0;
                            double rsq(std::max(c->getEnd1Curvature().y(),c->getEnd2Curvature().y()));
                            double rsum(0.0);
                            if (c->getEnd1Curvature().y())
                                rsum += 1.0/c->getEnd1Curvature().y();
                            if (c->getEnd2Curvature().y())
                                rsum += 1.0/c->getEnd2Curvature().y();
                            if (userArea_) {
#ifdef THREED
                                rsq = std::sqrt(userArea_ / dPi);
#else
                                rsq = userArea_ / 2.0;
#endif        
                                rsum = rsq + rsq;
                                rsq = 1. / rsq;
                            }
#ifdef TWOD                    
                               return (kn_ * rsum * rsq / 2.0);
#else                          
                               return (kn_ * rsum * rsq * rsq) / dPi;
#endif                         
                          }
        case kwKRatio:    return (ks_ == 0.0) ? 0.0 : (kn_/ks_);
        case kwDpNRatio:  return dpProps_ ? dpProps_->dp_nratio_ : 0;
        case kwDpSRatio:  return dpProps_ ? dpProps_->dp_sratio_ : 0;
        case kwDpMode:    return dpProps_ ? dpProps_->dp_mode_ : 0;
        case kwDpF:       {
                               dpProps_ ? var.setValue(dpProps_->dp_F_) : var.setValue(DVect(0.0));
                               return var;
                          }
        case kwCbState:   return cb_state_;
        case kwCbTenF:    return cb_tenF_;
        case kwCbShearF:  return cb_shearF_;
        case kwCbTStr:    nstr = true;
        case kwCbSStr:    {
                            const IContactMechanical *c(convert_getcast<IContactMechanical>(con));
                            if (c ==nullptr) return 0.0;
                            double tmp(std::max(c->getEnd1Curvature().y(),c->getEnd2Curvature().y()));
                            if (userArea_) {
#ifdef THREED
                                tmp = std::sqrt(userArea_ / dPi);
#else
                                tmp = userArea_ / 2.0;
#endif        
                                tmp = 1. / tmp;
                            }
                            if (nstr) {
#ifdef TWOD                 
                                return (cb_tenF_ * tmp / 2.0);
#else
                                return (cb_tenF_ * tmp * tmp / dPi);
#endif                    
                            } else {
#ifdef TWOD
                                return (cb_shearF_ * tmp / 2.0);
#else                    
                                return (cb_shearF_ * tmp * tmp / dPi);
#endif
                            }
                       }
        case kwUserArea:    return userArea_;
        }
        assert(0);
        return QVariant();
    }

    bool ContactModelLinearCBond::getPropertyGlobal(uint i) const {
        switch (i) {
        case kwLinF:   
        case kwDpF:  
            return false;
        }
        return true;
    }

    bool ContactModelLinearCBond::setProperty(uint i,const QVariant &v,IContact *) {
        dpProps dp;
        switch (i) {
        case kwKn: {
                 if (!v.canConvert<double>())
                    throw Exception("kn must be a double.");
                double val(v.toDouble());
                if (val<0.0)
                    throw Exception("Negative kn not allowed.");
                kn_ = val;
                return true;
            }
        case kwKs: {
                 if (!v.canConvert<double>())
                    throw Exception("ks must be a double.");
                double val(v.toDouble());
                if (val<0.0)
                    throw Exception("Negative ks not allowed.");
                ks_ = val;  
                return true;
            }
        case kwFric: {
                 if (!v.canConvert<double>())
                    throw Exception("fric must be a double.");
                double val(v.toDouble());
                if (val<0.0)
                    throw Exception("Negative fric not allowed.");
                fric_ = val;  
                return false;
            }
        case kwCbTenF: {
                 if (!v.canConvert<double>())
                    throw Exception("cb_tenf must be a double.");
                double val(v.toDouble());
                if (val<0.0)
                    throw Exception("Negative cb_tenf not allowed.");
                cb_tenF_ = val;
                return false;
            }
        case kwCbShearF: {
                 if (!v.canConvert<double>())
                    throw Exception("cb_shearf must be a double.");
                double val(v.toDouble());
                if (val<0.0)
                    throw Exception("Negative cb_shearf not allowed.");
                cb_shearF_ = val;
                return false;
            }
        case kwLinF: {
                 if (!v.canConvert<DVect>())
                    throw Exception("lin_force must be a vector.");
                DVect val(v.value<DVect>());
                lin_F_ = val;
                return false;
            }
        case kwLinMode: {
                 if (!v.canConvert<uint>())
                    throw Exception("lin_mode must be 0 (absolute) or 1 (incremental).");
                uint val(v.toUInt());
                if (val>1)
                    throw Exception("lin_mode must be 0 (absolute) or 1 (incremental).");
                lin_mode_ = val;
                return false;
            }
        case kwRGap: {
                if (!v.canConvert<double>())
                    throw Exception("Reference gap must be a double.");
                double val(v.toDouble());
                rgap_ = val;  
                return false;
            }
        case kwDpNRatio: {
                 if (!v.canConvert<double>())
                    throw Exception("dp_nratio must be a double.");
                double val(v.toDouble());
                if (val<0.0)
                    throw Exception("Negative dp_nratio not allowed.");
                if (val == 0.0 && !dpProps_)
                    return false;
                if (!dpProps_)
                    dpProps_ = NEWC(dpProps());
                dpProps_->dp_nratio_ = val; 
                return true;
            }
        case kwDpSRatio: {
                 if (!v.canConvert<double>())
                    throw Exception("dp_sratio must be a double.");
                double val(v.toDouble());
                if (val<0.0)
                    throw Exception("Negative dp_sratio not allowed.");
                if (val == 0.0 && !dpProps_)
                    return false;
                if (!dpProps_)
                    dpProps_ = NEWC(dpProps());
                dpProps_->dp_sratio_ = val;
                return true;
            }
        case kwDpMode: {
                 if (!v.canConvert<int>())
                    throw Exception("The viscous mode dp_mode must be 0, 1, 2, or 3.");
               int val(v.toInt());
                if (val == 0 && !dpProps_)
                    return false;
                if (val < 0 || val > 3)
                    throw Exception("The dashpot mode dp_mode must be 0, 1, 2, or 3.");
                if (!dpProps_)
                    dpProps_ = NEWC(dpProps());
                dpProps_->dp_mode_ = val;
                return false;
            }
        case kwDpF: {
                 if (!v.canConvert<DVect>())
                    throw Exception("dp_force must be a vector.");
                DVect val(v.value<DVect>());
                if (val.fsum() == 0.0 && !dpProps_)
                    return false;
                if (!dpProps_)
                    dpProps_ = NEWC(dpProps());
                dpProps_->dp_F_ = val;
                return false;
            }
        case kwUserArea: {
                if (!v.canConvert<double>())
                    throw Exception("user_area must be a double.");
                double val(v.toDouble());
                if (val < 0.0)
                    throw Exception("Negative user_area not allowed.");
                userArea_ = val;
                return true;
            }
        }
        return false;
    }

    bool ContactModelLinearCBond::getPropertyReadOnly(uint i) const {
        switch (i) {
        case kwDpF:
        case kwLinS:
        case kwEmod:
        case kwKRatio:
        case kwCbState:
        case kwCbTStr:
        case kwCbSStr:
            return true;
        default:
            break;
        }
        return false;
    }

    bool ContactModelLinearCBond::supportsInheritance(uint i) const {
        switch (i) {
        case kwKn:
        case kwKs:
        case kwFric:
            return true;
        default:
            break;
        }
        return false;
    }

    QString  ContactModelLinearCBond::getMethodArguments(uint i) const {
        switch (i) {
        case kwCbBond: 
            return "gap";
        case kwDeformability:
            return "emod,kratio";
        case kwCbStrength: 
            return "tensile,shear";
        case kwCbUnbond: 
            return "gap";
        case kwArea:
            return QString();
        }
        assert(0);
        return "";
    }

    bool ContactModelLinearCBond::setMethod(uint i,const QVector<QVariant> &vl,IContact *con) {
        IContactMechanical *c(convert_getcast<IContactMechanical>(con));
        switch (i) {
        case kwCbBond: {
                if (cb_state_ == 3) return false;
                double mingap = -1.0 * limits<double>::max();
                double maxgap = 0;
                if (vl.at(0).canConvert<Double>()) 
                    maxgap = vl.at(0).toDouble();
                else if (vl.at(0).canConvert<DVect2>()) {
                    DVect2 value = vl.at(0).value<DVect2>();
                    mingap = value.minComp();
                    maxgap = value.maxComp();
                } else if (!vl.at(0).isNull())
                    throw Exception("gap value %1 not recognized in method bond in contact model %2.",vl.at(0),getName());

                double gap = c->getGap(); 
                if (  gap >= mingap && gap <= maxgap)
                    cb_state_ = 3;
                return false;
            }
        case kwCbUnbond: {
                if (cb_state_ == 0) return false;
                double mingap = -1.0 * limits<double>::max();
                double maxgap = 0;
                if (vl.at(0).canConvert<double>()) 
                    maxgap = vl.at(0).toDouble();
                else if (vl.at(0).canConvert<DVect2>()) {
                    DVect2 value = vl.at(0).value<DVect2>();
                    mingap = value.minComp();
                    maxgap = value.maxComp();
                }
                else if (!vl.at(0).isNull())
                    throw Exception("gap value %1 not recognized in method unbond in contact model %2.",vl.at(0),getName());

                double gap = c->getGap(); 
                if (  gap >= mingap && gap <= maxgap)
                    cb_state_ = 0;
                return false;
            }
        case kwDeformability: {
                double emod(0.0);
                double krat(0.0);
                if (vl.at(0).isNull()) 
                    throw Exception("Argument emod must be specified with method deformability in contact model %1.",getName());
                emod = vl.at(0).toDouble();
                if (emod<0.0)
                    throw Exception("Negative emod not allowed in contact model %1.",getName());
                if (vl.at(1).isNull()) 
                    throw Exception("Argument kratio must be specified with method deformability in contact model %1.",getName());
                krat = vl.at(1).toDouble();
                if (krat<0.0)
                    throw Exception("Negative linear stiffness ratio not allowed in contact model %1.",getName());
                double rsq(std::max(c->getEnd1Curvature().y(),c->getEnd2Curvature().y()));
                double rsum(0.0);
                if (c->getEnd1Curvature().y())
                    rsum += 1.0/c->getEnd1Curvature().y();
                if (c->getEnd2Curvature().y())
                    rsum += 1.0/c->getEnd2Curvature().y();
                if (userArea_) {
#ifdef THREED
                    rsq = std::sqrt(userArea_ / dPi);
#else
                    rsq = userArea_ / 2.0;
#endif        
                    rsum = rsq + rsq;
                    rsq = 1. / rsq;
                }
#ifdef TWOD
                kn_ = 2.0 * emod / (rsq * rsum);
#else
                kn_ = dPi * emod / (rsq * rsq * rsum);
#endif
                ks_ = (krat == 0.0) ? 0.0 : kn_ / krat;
                setInheritance(1,false);
                setInheritance(2,false);
                return true;
            }
        case kwCbStrength: {
                if (cb_state_ != 3) return false;
                double nval(0.0);
                double sval(0.0);
                if (vl.at(0).isNull()) 
                    throw Exception("tensile value must be specified with method cb_strength in contact model %1.",getName());
                nval = vl.at(0).toDouble();
                if (nval<0.0)
                    throw Exception("Negative tensile strength not allowed in contact model %1.",getName());
                if (vl.at(1).isNull()) 
                    throw Exception("shear value must be specified with method cb_strength in contact model %1.",getName());
                sval = vl.at(1).toDouble();
                if (sval<0.0)
                    throw Exception("Negative shear strength not allowed in contact model %1.",getName());
                double tmp(std::max(c->getEnd1Curvature().y(),c->getEnd2Curvature().y()));
                if (userArea_) {
#ifdef THREED
                    tmp = std::sqrt(userArea_ / dPi);
#else
                    tmp = userArea_ / 2.0;
#endif        
                    tmp = 1. / tmp;
                }
#ifdef TWOD
                cb_tenF_   = nval * 2.0 / tmp;
                cb_shearF_ = sval * 2.0 / tmp;
#else
                cb_tenF_   = nval * dPi / ( tmp * tmp );
                cb_shearF_ = sval * dPi / (tmp * tmp);
#endif
                return false;
            }
        case kwArea: {
                if (!userArea_) {
                    double rsq(1./std::max(c->getEnd1Curvature().y(),c->getEnd2Curvature().y()));
#ifdef THREED
                    userArea_ = rsq * rsq * dPi;
#else
                    userArea_ = rsq * 2.0;
#endif                            
                }
                return true;
            }

        }
        return false;
    }

    double ContactModelLinearCBond::getEnergy(uint i) const {
        double ret(0.0);
        if (!energies_)
            return ret;
        switch (i) {
        case kwEStrain:  return energies_->estrain_;
        case kwESlip:    return energies_->eslip_;
        case kwEDashpot: return energies_->edashpot_;
        }
        assert(0);
        return ret;
    }

    bool ContactModelLinearCBond::getEnergyAccumulate(uint i) const {
        switch (i) {
        case kwEStrain:  return false;
        case kwESlip:    return true;
        case kwEDashpot: return true;
        }
        assert(0);
        return false;
    }

    void ContactModelLinearCBond::setEnergy(uint i,const double &d) {
        if (!energies_) return;
        switch (i) {
        case kwEStrain:  energies_->estrain_ = d; return;  
        case kwESlip:    energies_->eslip_   = d; return;
        case kwEDashpot: energies_->edashpot_= d; return;
        }
        assert(0);
        return;
    }

    bool ContactModelLinearCBond::validate(ContactModelMechanicalState *state,const double &) {
        assert(state);
        const IContactMechanical *c = state->getMechanicalContact(); 
        assert(c);

        if (state->trackEnergy_)
            activateEnergy();

        if (inheritanceField_ & linKnMask)
            updateKn(c);
        if (inheritanceField_ & linKsMask)
            updateKs(c);
        if (inheritanceField_ & linFricMask)
            updateFric(c);

        updateEffectiveStiffness(state);
        return checkActivity(state->gap_);
    }

    static const QString knstr("kn");
    bool ContactModelLinearCBond::updateKn(const IContactMechanical *con) {
        assert(con);
        QVariant v1 = con->getEnd1()->getProperty(knstr);
        QVariant v2 = con->getEnd2()->getProperty(knstr);
        if (!v1.isValid() || !v2.isValid())
            return false;
        double kn1 = v1.toDouble();
        double kn2 = v2.toDouble();
        double val = kn_;
        if (kn1 && kn2)
            kn_ = kn1*kn2/(kn1+kn2);
        else if (kn1)
            kn_ = kn1;
        else if (kn2)
            kn_ = kn2;
        return ( (kn_ != val) );
    }

    static const QString ksstr("ks");
    bool ContactModelLinearCBond::updateKs(const IContactMechanical *con) {
        assert(con);
        QVariant v1 = con->getEnd1()->getProperty(ksstr);
        QVariant v2 = con->getEnd2()->getProperty(ksstr);
        if (!v1.isValid() || !v2.isValid())
            return false;
        double ks1 = v1.toDouble();
        double ks2 = v2.toDouble();
        double val = ks_;
        if (ks1 && ks2)
            ks_ = ks1*ks2/(ks1+ks2);
        else if (ks1)
            ks_ = ks1;
        else if (ks2)
            ks_ = ks2;
        return ( (ks_ != val) );
    }

    static const QString fricstr("fric");
    bool ContactModelLinearCBond::updateFric(const IContactMechanical *con) {
        assert(con);
        QVariant v1 = con->getEnd1()->getProperty(fricstr);
        QVariant v2 = con->getEnd2()->getProperty(fricstr);
        if (!v1.isValid() || !v2.isValid())
            return false;
        double fric1 = std::max(0.0,v1.toDouble());
        double fric2 = std::max(0.0,v2.toDouble());
        double val = fric_;
        fric_ = std::min(fric1,fric2);
        return ( (fric_ != val) );
    }

    bool ContactModelLinearCBond::endPropertyUpdated(const QString &name,const IContactMechanical *c) {
        assert(c);
        QStringList availableProperties = getProperties().simplified().replace(" ","").split(",",QString::SkipEmptyParts);
        QRegExp rx(name,Qt::CaseInsensitive);
        int idx = availableProperties.indexOf(rx)+1;
        bool ret=false;

        if (idx<=0)
            return ret;
         
        switch(idx) {
        case kwKn:  { //kn
                if (inheritanceField_ & linKnMask)
                    ret = updateKn(c);
                break;
            }
        case kwKs:  { //ks
                if (inheritanceField_ & linKsMask)
                    ret =updateKs(c);
                break;
            }
        case kwFric:  { //fric
                if (inheritanceField_ & linFricMask)
                    updateFric(c);
                break;
            }
        }
        return ret;
    }

    void ContactModelLinearCBond::updateEffectiveStiffness(ContactModelMechanicalState *) {
        DVect2 ret(kn_,ks_);
        // correction if viscous damping active
        if (dpProps_) {
            DVect2 correct(1.0);
            if (dpProps_->dp_nratio_)
                correct.rx() = sqrt(1.0+dpProps_->dp_nratio_*dpProps_->dp_nratio_) - dpProps_->dp_nratio_;
            if (dpProps_->dp_sratio_)
                correct.ry() = sqrt(1.0+dpProps_->dp_sratio_*dpProps_->dp_sratio_) - dpProps_->dp_sratio_;
            ret /= (correct*correct);
        }
        effectiveTranslationalStiffness_ = ret;
    }
     
    bool ContactModelLinearCBond::forceDisplacementLaw(ContactModelMechanicalState *state,const double &timestep) {
        assert(state);

        double overlap = rgap_ - state->gap_;
        DVect trans = state->relativeTranslationalIncrement_;
        double correction = 1.0;

        if (state->activated()) {
            if (cmEvents_[fActivated] >= 0) {
                FArray<QVariant,2> arg;
                QVariant v;
                IContact * c = const_cast<IContact*>(state->getContact());
                TPtr<IThing> t(c->getIThing());
                v.setValue(t);
                arg.push_back(v);
                IFishCallList *fi = const_cast<IFishCallList*>(state->getProgram()->findInterface<IFishCallList>());
                fi->setCMFishCallArguments(c,arg,cmEvents_[fActivated]);
            }
            if (lin_mode_ == 0 && trans.x()) {
                correction = -1.0*overlap / trans.x();
                if (correction < 0)
                    correction = 1.0;
            }
        }

#ifdef THREED
        DVect norm(trans.x(),0.0,0.0);
#else
        DVect norm(trans.x(),0.0);
#endif
        DAVect ang  = state->relativeAngularIncrement_;
        DVect lin_F_old = lin_F_;

        if (lin_mode_ == 0)
            lin_F_.rx() = overlap * kn_;
        else
          lin_F_.rx() -= correction * norm.x() * kn_;

        DVect u_s = trans;
        u_s.rx() = 0.0;
        DVect sforce = lin_F_ - u_s * ks_ * correction;
        sforce.rx() = 0.0;

        // Resolve failure (contact bonds and friction)
        if (state->canFail_) {
            // Resolve contact bond failure - done first so that this way, even if breaks, one can ensure a valid sliding state
            if (cb_state_ == 3)  { // bonded - Note: this means that isSliding is false!
                if (lin_F_.x() <= -cb_tenF_) {
                    // Broke in tension
                    cb_state_ = 1;
                    if (cmEvents_[fBondBreak] >= 0) {
                        FArray<QVariant,3> arg;
                        QVariant p1;
                        IContact * c = const_cast<IContact*>(state->getContact());
                        TPtr<IThing> t(c->getIThing());
                        p1.setValue(t);
                        arg.push_back(p1);
                        p1.setValue(cb_state_);
                        arg.push_back(p1);
                        p1.setValue(cb_tenF_);
                        arg.push_back(p1);
                        IFishCallList *fi = const_cast<IFishCallList*>(state->getProgram()->findInterface<IFishCallList>());
                        fi->setCMFishCallArguments(c,arg,cmEvents_[fBondBreak]);
                    }
                } else if (sforce.mag() >= cb_shearF_) {
                    // Broke in shear
                    cb_state_ = 2;
                    if (cmEvents_[fBondBreak] >= 0) {
                        FArray<QVariant,3> arg;
                        QVariant p1;
                        IContact * c = const_cast<IContact*>(state->getContact());
                        TPtr<IThing> t(c->getIThing());
                        p1.setValue(t);
                        arg.push_back(p1);
                        p1.setValue(cb_state_);
                        arg.push_back(p1);
                        p1.setValue(cb_shearF_);
                        arg.push_back(p1);
                        IFishCallList *fi = const_cast<IFishCallList*>(state->getProgram()->findInterface<IFishCallList>());
                        fi->setCMFishCallArguments(c,arg,cmEvents_[fBondBreak]);
                    }
                }
            }

            // 2) Resolve sliding if no contact bond exists
            if (cb_state_ < 3) {
                // No contact bond - normal force is positive only
                lin_F_.rx() = std::max(0.0,lin_F_.x());
                // No contact bond - sliding can occur
                double crit = lin_F_.x() * fric_;
                double sfmag = sforce.mag();
                if (sfmag > crit) {
                    double rat = crit / sfmag;
                    sforce *= rat;
                    if (!lin_S_ && cmEvents_[fSlipChange] >= 0) {
                        FArray<QVariant,3> arg;
                        QVariant p1;
                        IContact * c = const_cast<IContact*>(state->getContact());
                        TPtr<IThing> t(c->getIThing());
                        p1.setValue(t);
                        arg.push_back(p1);
                        p1.setValue(0);
                        arg.push_back(p1);
                        IFishCallList *fi = const_cast<IFishCallList*>(state->getProgram()->findInterface<IFishCallList>());
                        fi->setCMFishCallArguments(c,arg,cmEvents_[fSlipChange]);
                    }
                    lin_S_ = true;
                } else {
                    if (lin_S_) {
                        if (cmEvents_[fSlipChange] >= 0) {
                            FArray<QVariant,3> arg;
                            QVariant p1;
                            IContact * c = const_cast<IContact*>(state->getContact());
                            TPtr<IThing> t(c->getIThing());
                            p1.setValue(t);
                            arg.push_back(p1);
                            p1.setValue(1);
                            arg.push_back(p1);
                            IFishCallList *fi = const_cast<IFishCallList*>(state->getProgram()->findInterface<IFishCallList>());
                            fi->setCMFishCallArguments(c,arg,cmEvents_[fSlipChange]);
                        }
                        lin_S_ = false;
                    }
                }
            }
        }

        sforce.rx() = lin_F_.x();
        lin_F_ = sforce;          // total force in linear contact model
         
        // 3) Account for dashpot forces
        if (dpProps_) {
            dpProps_->dp_F_.fill(0.0);
            double vcn(0.0), vcs(0.0);
            setDampCoefficients(state->inertialMass_,&vcn,&vcs);
            // First damp all components
            dpProps_->dp_F_ = u_s * (-1.0* vcs) / timestep; // shear component   
            dpProps_->dp_F_ -= norm * vcn / timestep;       // normal component
            // Need to change behavior based on the dp_mode
            if (cb_state_ !=3 && (dpProps_->dp_mode_ == 1 || dpProps_->dp_mode_ == 3))  { // limit the tensile if not bonded
                if (dpProps_->dp_F_.x() + lin_F_.x() < 0)
                    dpProps_->dp_F_.rx() = - lin_F_.rx();
            }
            if (lin_S_ && dpProps_->dp_mode_ > 1)  { // limit the shear if not sliding
                double dfn = dpProps_->dp_F_.rx();
                dpProps_->dp_F_.fill(0.0); 
                dpProps_->dp_F_.rx() = dfn; 
            }
        }

        // 5) Compute energies
        if (state->trackEnergy_) {
            assert(energies_);
            energies_->estrain_ =  0.0;
            if (kn_)
                energies_->estrain_ = 0.5*lin_F_.x()*lin_F_.x()/kn_;
            if (ks_) {
                DVect s = lin_F_;
                s.rx() = 0.0;
                double smag2 = s.mag2();
                energies_->estrain_ += 0.5*smag2 / ks_;

                if (lin_S_) {
                    lin_F_old.rx() = 0.0;
                    DVect avg_F_s = (s + lin_F_old)*0.5;
                    DVect u_s_el =  (s - lin_F_old) / ks_;
                    energies_->eslip_ -= std::min(0.0,(avg_F_s | (u_s + u_s_el)));
                }
            }
            if (dpProps_) {
                energies_->edashpot_ -= dpProps_->dp_F_ | trans;
            }
        }
        assert(lin_F_ == lin_F_);
        return checkActivity(state->gap_);
    }

    void ContactModelLinearCBond::setForce(const DVect &v,IContact *c) { 
        lin_F(v); 
        if (v.x() > 0) 
            rgap_ = c->getGap() + v.x() / kn_; 
    } 

    void ContactModelLinearCBond::propagateStateInformation(IContactModelMechanical* old,const CAxes &oldSystem,const CAxes &newSystem) {
        // Only do something if the contact model is of the same type
        if (old->getContactModel()->getName().compare("linearcbond",Qt::CaseInsensitive) == 0 && !isBonded()) {
            ContactModelLinearCBond *oldCm = (ContactModelLinearCBond *)old;
#ifdef THREED
            // Need to rotate just the shear component from oldSystem to newSystem

            // Step 1 - rotate oldSystem so that the normal is the same as the normal of newSystem
            DVect axis = oldSystem.e1() & newSystem.e1();
            double c, ang, s;
            DVect re2;
            if (!checktol(axis.abs().maxComp(),0.0,1.0,1000)) {
                axis = axis.unit();
                c = oldSystem.e1()|newSystem.e1();
                if (c > 0)
                    c = std::min(c,1.0);
                else
                    c = std::max(c,-1.0);
                ang = acos(c);
                s = sin(ang);
                double t = 1. - c;
                DMatrix<3,3> rm;
                rm.get(0,0) = t*axis.x()*axis.x() + c;
                rm.get(0,1) = t*axis.x()*axis.y() - axis.z()*s;
                rm.get(0,2) = t*axis.x()*axis.z() + axis.y()*s;
                rm.get(1,0) = t*axis.x()*axis.y() + axis.z()*s;
                rm.get(1,1) = t*axis.y()*axis.y() + c;
                rm.get(1,2) = t*axis.y()*axis.z() - axis.x()*s;
                rm.get(2,0) = t*axis.x()*axis.z() - axis.y()*s;
                rm.get(2,1) = t*axis.y()*axis.z() + axis.x()*s;
                rm.get(2,2) = t*axis.z()*axis.z() + c;
                re2 = rm*oldSystem.e2();
            }
            else
                re2 = oldSystem.e2();
            // Step 2 - get the angle between the oldSystem rotated shear and newSystem shear
            axis = re2 & newSystem.e2();
            DVect2 tpf;
            DMatrix<2,2> m;
            if (!checktol(axis.abs().maxComp(),0.0,1.0,1000)) {
                axis = axis.unit();
                c = re2|newSystem.e2();
                if (c > 0)
                    c = std::min(c,1.0);
                else
                    c = std::max(c,-1.0);
                ang = acos(c);
                if (!checktol(axis.x(),newSystem.e1().x(),1.0,100))
                    ang *= -1;
                s = sin(ang);
                m.get(0,0) = c;
                m.get(1,0) = s;
                m.get(0,1) = -m.get(1,0);
                m.get(1,1) = m.get(0,0);
                tpf = m*DVect2(oldCm->lin_F_.y(),oldCm->lin_F_.z());
            } else {
                m.get(0,0) = 1.;
                m.get(0,1) = 0.;
                m.get(1,0) = 0.;
                m.get(1,1) = 1.;
                tpf = DVect2(oldCm->lin_F_.y(),oldCm->lin_F_.z());
            }
            DVect pforce = DVect(0,tpf.x(),tpf.y());
#else
            oldSystem;
            newSystem;
            DVect pforce = DVect(0,oldCm->lin_F_.y());
#endif
            for (int i=1; i<dim; ++i)
                lin_F_.rdof(i) += pforce.dof(i);
            oldCm->lin_F_ = DVect(0.0);
            if (dpProps_ && oldCm->dpProps_) {
#ifdef THREED
                tpf = m*DVect2(oldCm->dpProps_->dp_F_.y(),oldCm->dpProps_->dp_F_.z());
                pforce = DVect(oldCm->dpProps_->dp_F_.x(),tpf.x(),tpf.y());
#else
                pforce = oldCm->dpProps_->dp_F_;
#endif
                dpProps_->dp_F_ += pforce;
                oldCm->dpProps_->dp_F_ = DVect(0.0);
            }
            if(oldCm->getEnergyActivated()) {
                activateEnergy();
                energies_->estrain_  = oldCm->energies_->estrain_;
                energies_->eslip_    = oldCm->energies_->eslip_;
                energies_->edashpot_ = oldCm->energies_->edashpot_;
                oldCm->energies_->estrain_ = 0.0;
                oldCm->energies_->edashpot_ = 0.0;
                oldCm->energies_->eslip_ = 0.0;
            }
            rgap_ = oldCm->rgap_;
        }
        assert(lin_F_ == lin_F_);
    }

    void ContactModelLinearCBond::setNonForcePropsFrom(IContactModel *old) {
        // Only do something if the contact model is of the same type
        if (old->getName().compare("linearcbond",Qt::CaseInsensitive) == 0 && !isBonded()) {
            ContactModelLinearCBond *oldCm = (ContactModelLinearCBond *)old;
            kn_ = oldCm->kn_;
            ks_ = oldCm->ks_;
            fric_ = oldCm->fric_;
            lin_mode_ = oldCm->lin_mode_;
            rgap_ = oldCm->rgap_;
            userArea_ = oldCm->userArea_;

            if (oldCm->dpProps_) {
                if (!dpProps_)
                    dpProps_ = NEWC(dpProps());
                dpProps_->dp_nratio_ = oldCm->dpProps_->dp_nratio_;
                dpProps_->dp_sratio_ = oldCm->dpProps_->dp_sratio_;
                dpProps_->dp_mode_ = oldCm->dpProps_->dp_mode_;
            }
        }
    }

    DVect ContactModelLinearCBond::getForce(const IContactMechanical *) const {
        DVect ret(lin_F_);
        if (dpProps_)
            ret += dpProps_->dp_F_;
        return ret;
    }

    DAVect ContactModelLinearCBond::getMomentOn1(const IContactMechanical *c) const {
        DVect force = getForce(c);
        DAVect ret(0.0);
        c->updateResultingTorqueOn1Local(force,&ret);
        return ret;
    }

    DAVect ContactModelLinearCBond::getMomentOn2(const IContactMechanical *c) const {
        DVect force = getForce(c);
        DAVect ret(0.0);
        c->updateResultingTorqueOn2Local(force,&ret);
        return ret;
    }

    void ContactModelLinearCBond::setDampCoefficients(const double &mass,double *vcn,double *vcs) {
        *vcn = dpProps_->dp_nratio_ * 2.0 * sqrt(mass*(kn_));
        *vcs = dpProps_->dp_sratio_ * 2.0 * sqrt(mass*(ks_));
    }

} // namespace itascaxd
// EoF

Top