Linear Parallel Bond Model Implementation
See this page for the documentation of this contact model.
contactmodellinearpbond.h
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 | #pragma once
// contactmodellinearpbond.h
#include "contactmodel/src/contactmodelmechanical.h"
#ifdef LINEARPBOND_LIB
# define LINEARPBOND_EXPORT EXPORT_TAG
#elif defined(NO_MODEL_IMPORT)
# define LINEARPBOND_EXPORT
#else
# define LINEARPBOND_EXPORT IMPORT_TAG
#endif
namespace cmodelsxd {
using namespace itasca;
class ContactModelLinearPBond : public ContactModelMechanical {
public:
LINEARPBOND_EXPORT ContactModelLinearPBond();
LINEARPBOND_EXPORT virtual ~ContactModelLinearPBond();
virtual void copy(const ContactModel *c);
virtual void archive(ArchiveStream &);
virtual QString getName() const { return "linearpbond"; }
virtual void setIndex(int i) { index_=i;}
virtual int getIndex() const {return index_;}
enum PropertyKeys {
kwLinKn=1
, kwLinKs
, kwLinFric
, kwLinF
, kwLinS
, kwLinMode
, kwRGap
, kwEmod
, kwKRatio
, kwDpNRatio
, kwDpSRatio
, kwDpMode
, kwDpF
, kwPbState
, kwPbRMul
, kwPbKn
, kwPbKs
, kwPbMcf
, kwPbTStrength
, kwPbSStrength
, kwPbCoh
, kwPbFa
, kwPbSig
, kwPbTau
, kwPbF
, kwPbM
, kwPbRadius
, kwPbEmod
, kwPbKRatio
, kwUserArea
};
virtual QString getProperties() const {
return "kn"
",ks"
",fric"
",lin_force"
",lin_slip"
",lin_mode"
",rgap"
",emod"
",kratio"
",dp_nratio"
",dp_sratio"
",dp_mode"
",dp_force"
",pb_state"
",pb_rmul"
",pb_kn"
",pb_ks"
",pb_mcf"
",pb_ten"
",pb_shear"
",pb_coh"
",pb_fa"
",pb_sigma"
",pb_tau"
",pb_force"
",pb_moment"
",pb_radius"
",pb_emod"
",pb_kratio"
",user_area";
}
enum EnergyKeys { kwEStrain=1,kwESlip,kwEDashpot,kwEPbStrain};
virtual QString getEnergies() const { return "energy-strain,energy-slip,energy-dashpot,energy-pbstrain";}
virtual double getEnergy(uint i) const; // Base 1
virtual bool getEnergyAccumulate(uint i) const; // Base 1
virtual void setEnergy(uint i,const double &d); // Base 1
virtual void activateEnergy() { if (energies_) return; energies_ = NEWC(Energies());}
virtual bool getEnergyActivated() const {return (energies_ !=0);}
enum FishCallEvents {fActivated=0,fBondBreak,fSlipChange};
virtual QString getFishCallEvents() const { return "contact_activated,bond_break,slip_change"; }
virtual QVariant getProperty(uint i,const IContact *con=0) const;
virtual bool getPropertyGlobal(uint i) const;
virtual bool setProperty(uint i,const QVariant &v,IContact *con=0);
virtual bool getPropertyReadOnly(uint i) const;
virtual bool supportsInheritance(uint i) const;
virtual bool getInheritance(uint i) const { assert(i<32); quint32 mask = to<quint32>(1 << i); return (inheritanceField_ & mask) ? true : false; }
virtual void setInheritance(uint i,bool b) { assert(i<32); quint32 mask = to<quint32>(1 << i); if (b) inheritanceField_ |= mask; else inheritanceField_ &= ~mask; }
enum MethodKeys { kwDeformability=1
, kwPbDeformability
, kwPbBond
, kwPbUnbond
, kwArea
};
virtual QString getMethods() const {
return "deformability"
",pb_deformability"
",bond"
",unbond"
",area";
}
virtual QString getMethodArguments(uint i) const;
virtual bool setMethod(uint i,const QVector<QVariant> &vl,IContact *con=0); // Base 1 - returns true if timestep contributions need to be updated
virtual uint getMinorVersion() const;
virtual bool validate(ContactModelMechanicalState *state,const double ×tep);
virtual bool endPropertyUpdated(const QString &name,const IContactMechanical *c);
virtual bool forceDisplacementLaw(ContactModelMechanicalState *state,const double ×tep);
virtual DVect2 getEffectiveTranslationalStiffness() const { DVect2 ret = effectiveTranslationalStiffness_; if(pbProps_) ret+= pbProps_->pbTransStiff_ ;return ret;}
virtual DAVect getEffectiveRotationalStiffness() const {if (!pbProps_) return DAVect(0.0); return pbProps_->pbAngStiff_;}
virtual bool thermalCoupling(ContactModelMechanicalState *, ContactModelThermalState * , IContactThermal *,const double &);
virtual ContactModelLinearPBond *clone() const { return NEWC(ContactModelLinearPBond()); }
virtual double getActivityDistance() const {return rgap_;}
virtual bool isOKToDelete() const { return !isBonded(); }
virtual void resetForcesAndMoments() { lin_F(DVect(0.0)); dp_F(DVect(0.0)); pbF(DVect(0.0)); pbM(DAVect(0.0)); if (energies_) { energies_->estrain_ = 0.0; if (energies_) energies_->epbstrain_ = 0.0;}}
virtual void setForce(const DVect &v,IContact *c);
virtual void setArea(const double &d) { userArea_ = d; }
virtual bool checkActivity(const double &gap) { return (gap <= rgap_ || isBonded()); }
virtual bool isSliding() const { return lin_S_; }
virtual bool isBonded() const { return pbProps_ ? (pbProps_->pb_state_==3) : false; }
virtual void propagateStateInformation(IContactModelMechanical* oldCm,const CAxes &oldSystem=CAxes(),const CAxes &newSystem=CAxes());
virtual void setNonForcePropsFrom(IContactModel *oldCM);
const double & kn() const {return kn_;}
void kn(const double &d) {kn_=d;}
const double & ks() const {return ks_;}
void ks(const double &d) {ks_=d;}
const double & fric() const {return fric_;}
void fric(const double &d) {fric_=d;}
const DVect & lin_F() const {return lin_F_;}
void lin_F(const DVect &f) { lin_F_=f;}
bool lin_S() const {return lin_S_;}
void lin_S(bool b) { lin_S_=b;}
uint lin_mode() const {return lin_mode_;}
void lin_mode(uint i) { lin_mode_=i;}
const double & rgap() const {return rgap_;}
void rgap(const double &d) {rgap_=d;}
bool hasDamping() const {return dpProps_ ? true : false;}
double dp_nratio() const {return (hasDamping() ? (dpProps_->dp_nratio_) : 0.0);}
void dp_nratio(const double &d) { if(!hasDamping()) return; dpProps_->dp_nratio_=d;}
double dp_sratio() const {return hasDamping() ? dpProps_->dp_sratio_: 0.0;}
void dp_sratio(const double &d) { if(!hasDamping()) return; dpProps_->dp_sratio_=d;}
int dp_mode() const {return hasDamping() ? dpProps_->dp_mode_: -1;}
void dp_mode(int i) { if(!hasDamping()) return; dpProps_->dp_mode_=i;}
DVect dp_F() const {return hasDamping() ? dpProps_->dp_F_: DVect(0.0);}
void dp_F(const DVect &f) { if(!hasDamping()) return; dpProps_->dp_F_=f;}
bool hasEnergies() const {return energies_ ? true:false;}
double estrain() const {return hasEnergies() ? energies_->estrain_: 0.0;}
void estrain(const double &d) { if(!hasEnergies()) return; energies_->estrain_=d;}
double eslip() const {return hasEnergies() ? energies_->eslip_: 0.0;}
void eslip(const double &d) { if(!hasEnergies()) return; energies_->eslip_=d;}
double edashpot() const {return hasEnergies() ? energies_->edashpot_: 0.0;}
void edashpot(const double &d) { if(!hasEnergies()) return; energies_->edashpot_=d;}
double epbstrain() const {return hasEnergies() ? energies_->epbstrain_: 0.0;}
void epbstrain(const double &d) { if(!hasEnergies()) return; energies_->epbstrain_=d;}
bool hasPBond() const {return pbProps_ ? true:false;}
int pbState() const {return hasPBond() ? pbProps_->pb_state_: 0;}
void pbState(int i) { if(!hasPBond()) return; pbProps_->pb_state_=i;}
double pbRmul() const {return (hasPBond() ? (pbProps_->pb_rmul_) : 0.0);}
void pbRmul(const double &d) { if(!hasPBond()) return; pbProps_->pb_rmul_=d;}
double pbKn() const {return (hasPBond() ? (pbProps_->pb_kn_) : 0.0);}
void pbKn(const double &d) { if(!hasPBond()) return; pbProps_->pb_kn_=d;}
double pbKs() const {return (hasPBond() ? (pbProps_->pb_ks_) : 0.0);}
void pbKs(const double &d) { if(!hasPBond()) return; pbProps_->pb_ks_=d;}
double pbMCF() const {return (hasPBond() ? (pbProps_->pb_mcf_) : 0.0);}
void pbMCF(const double &d) { if(!hasPBond()) return; pbProps_->pb_mcf_=d;}
double pbTen() const {return (hasPBond() ? (pbProps_->pb_ten_) : 0.0);}
void pbTen(const double &d) { if(!hasPBond()) return; pbProps_->pb_ten_=d;}
double pbCoh() const {return (hasPBond() ? (pbProps_->pb_coh_) : 0.0);}
void pbCoh(const double &d) { if(!hasPBond()) return; pbProps_->pb_coh_=d;}
double pbFA() const {return (hasPBond() ? (pbProps_->pb_fa_) : 0.0);}
void pbFA(const double &d) { if(!hasPBond()) return; pbProps_->pb_fa_=d;}
DVect pbF() const {return hasPBond() ? pbProps_->pb_F_: DVect(0.0);}
void pbF(const DVect &f) { if(!hasPBond()) return; pbProps_->pb_F_=f;}
DAVect pbM() const {return hasPBond() ? pbProps_->pb_M_: DAVect(0.0);}
void pbM(const DAVect &m) { if(!hasPBond()) return; pbProps_->pb_M_=m;}
DVect2 pbTransStiff() const {return hasPBond() ? pbProps_->pbTransStiff_: DVect2(0.0);}
void pbTransStiff(const DVect2 &f) { if(!hasPBond()) return; pbProps_->pbTransStiff_=f;}
DAVect pbAngStiff() const {return hasPBond() ? pbProps_->pbAngStiff_: DAVect(0.0);}
void pbAngStiff(const DAVect &m) { if(!hasPBond()) return; pbProps_->pbAngStiff_=m;}
uint inheritanceField() const {return inheritanceField_;}
void inheritanceField(uint i) {inheritanceField_ = i;}
const DVect2 & effectiveTranslationalStiffness() const {return effectiveTranslationalStiffness_;}
void effectiveTranslationalStiffness(const DVect2 &v ) {effectiveTranslationalStiffness_=v;}
/// Return the total force that the contact model holds.
virtual DVect getForce(const IContactMechanical *) const;
/// Return the total moment on 1 that the contact model holds
virtual DAVect getMomentOn1(const IContactMechanical *) const;
/// Return the total moment on 1 that the contact model holds
virtual DAVect getMomentOn2(const IContactMechanical *) const;
private:
static int index_;
struct Energies {
Energies() : estrain_(0.0), eslip_(0.0), edashpot_(0.0), epbstrain_(0.0) {}
double estrain_; // elastic energy stored in contact
double eslip_; // work dissipated by friction
double edashpot_; // work dissipated by dashpots
double epbstrain_; // parallel bond strain energy
};
struct dpProps {
dpProps() : dp_nratio_(0.0), dp_sratio_(0.0), dp_mode_(0), dp_F_(DVect(0.0)) {}
double dp_nratio_; // normal viscous critical damping ratio
double dp_sratio_; // shear viscous critical damping ratio
int dp_mode_; // for viscous mode (0-4) 0 = dashpots, 1 = tensile limit, 2 = shear limit, 3 = limit both
DVect dp_F_; // Force in the dashpots
};
struct pbProps {
pbProps() : pb_state_(0), pb_rmul_(1.0), pb_kn_(0.0), pb_ks_(0.0),
pb_mcf_(1.0), pb_ten_(0.0), pb_coh_(0.0), pb_fa_(0.0), pb_F_(DVect(0.0)), pb_M_(DAVect(0.0)),
pbTransStiff_(0.0), pbAngStiff_(0.0){}
// parallel bond
int pb_state_; // Bond mode - 0 (NBNF), 1 (NBFT), 2 (NBFS), 3 (B)
double pb_rmul_; // Radius multiplier
double pb_kn_; // normal stiffness
double pb_ks_; // shear stiffness
double pb_mcf_; // Moment contribution factor
double pb_ten_; // normal strength
double pb_coh_; // cohesion
double pb_fa_; // friction angle
DVect pb_F_; // Force in parallel bond
DAVect pb_M_; // moment in parallel bond
DVect2 pbTransStiff_; // (Normal,Shear) Translational stiffness of the parallel bond
DAVect pbAngStiff_; // (Normal,Shear) Rotational stiffness of the parallel bond
};
bool updateKn(const IContactMechanical *con);
bool updateKs(const IContactMechanical *con);
bool updateFric(const IContactMechanical *con);
double pbStrainEnergy() const; // Compute bond strain energy
void updateEffectiveStiffness(ContactModelMechanicalState *state);
DVect3 pbData(const IContactMechanical *con) const; // Bond area and inertia
DVect2 pbSMax(const IContactMechanical *con) const; // Maximum stress (tensile,shear) at bond periphery
double pbShearStrength(const double &pbArea) const; // Bond shear strength
void setDampCoefficients(const double &mass,double *vcn,double *vcs);
// inheritance fields
quint32 inheritanceField_;
// linear model
double kn_; // normal stiffness
double ks_; // shear stiffness
double fric_; // Coulomb friction coefficient
DVect lin_F_; // Force carried in the linear model
bool lin_S_; // the current sliding state
uint lin_mode_; // specifies absolute (0) or incremental (1) behavior for the the linear part
double rgap_; // reference gap for the linear part
dpProps * dpProps_; // The viscous properties
pbProps * pbProps_; // The parallel bond properties
double userArea_; // User specified area
Energies * energies_; // energies
DVect2 effectiveTranslationalStiffness_;
};
} // namespace itascaxd
// EoF
|
contactmodellinearpbond.cpp
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 | // contactmodellinear.cpp
#include "contactmodellinearpbond.h"
#include "module/interface/icontactmechanical.h"
#include "module/interface/icontact.h"
#include "module/interface/ipiecemechanical.h"
#include "module/interface/ipiece.h"
#include "../version.txt"
#include "base/src/basetoqt.h"
#include "module/interface/ifishcalllist.h"
#include "utility/src/tptr.h"
#include "shared/src/mathutil.h"
#include "kernel/interface/iprogram.h"
#include "module/interface/icontactthermal.h"
#include "contactmodel/src/contactmodelthermal.h"
#ifdef LINEARPBOND_LIB
int __stdcall DllMain(void *,unsigned, void *)
{
return 1;
}
extern "C" EXPORT_TAG const char *getName()
{
#if DIM==3
return "contactmodelmechanical3dlinearpbond";
#else
return "contactmodelmechanical2dlinearpbond";
#endif
}
extern "C" EXPORT_TAG unsigned getMajorVersion()
{
return MAJOR_VERSION;
}
extern "C" EXPORT_TAG unsigned getMinorVersion()
{
return MINOR_VERSION;
}
extern "C" EXPORT_TAG void *createInstance()
{
cmodelsxd::ContactModelLinearPBond *m = NEWC(cmodelsxd::ContactModelLinearPBond());
return (void *)m;
}
#endif // LINEARPBOND_EXPORTS
namespace cmodelsxd {
static const quint32 linKnMask = 0x00002; // Base 1!
static const quint32 linKsMask = 0x00004;
static const quint32 linFricMask = 0x00008;
using namespace itasca;
int ContactModelLinearPBond::index_ = -1;
UInt ContactModelLinearPBond::getMinorVersion() const { return MINOR_VERSION;}
ContactModelLinearPBond::ContactModelLinearPBond() : inheritanceField_(linKnMask|linKsMask|linFricMask)
, kn_(0.0)
, ks_(0.0)
, fric_(0.0)
, lin_F_(DVect(0.0))
, lin_S_(false)
, lin_mode_(0)
, rgap_(0.0)
, dpProps_(0)
, pbProps_(0)
, userArea_(0)
, energies_(0)
, effectiveTranslationalStiffness_(DVect2(0.0)) {
// setFromParent(ContactModelMechanicalList::instance()->find(getName()));
}
ContactModelLinearPBond::~ContactModelLinearPBond() {
if (dpProps_)
delete dpProps_;
if (pbProps_)
delete pbProps_;
if (energies_)
delete energies_;
}
void ContactModelLinearPBond::archive(ArchiveStream &stream) {
stream & kn_;
stream & ks_;
stream & fric_;
stream & lin_F_;
stream & lin_S_;
stream & lin_mode_;
if (stream.getArchiveState()==ArchiveStream::Save) {
bool b = false;
if (dpProps_) {
b = true;
stream & b;
stream & dpProps_->dp_nratio_;
stream & dpProps_->dp_sratio_;
stream & dpProps_->dp_mode_;
stream & dpProps_->dp_F_;
}
else
stream & b;
b = false;
if (energies_) {
b = true;
stream & b;
stream & energies_->estrain_;
stream & energies_->eslip_;
stream & energies_->edashpot_;
stream & energies_->epbstrain_;
}
else
stream & b;
b = false;
if (pbProps_) {
b = true;
stream & b;
stream & pbProps_->pb_state_;
stream & pbProps_->pb_rmul_;
stream & pbProps_->pb_kn_;
stream & pbProps_->pb_ks_;
stream & pbProps_->pb_mcf_;
stream & pbProps_->pb_ten_;
stream & pbProps_->pb_coh_;
stream & pbProps_->pb_fa_;
stream & pbProps_->pb_F_;
stream & pbProps_->pb_M_;
}
else
stream & b;
} else {
bool b(false);
stream & b;
if (b) {
if (!dpProps_)
dpProps_ = NEWC(dpProps());
stream & dpProps_->dp_nratio_;
stream & dpProps_->dp_sratio_;
stream & dpProps_->dp_mode_;
stream & dpProps_->dp_F_;
}
stream & b;
if (b) {
if (!energies_)
energies_ = NEWC(Energies());
stream & energies_->estrain_;
stream & energies_->eslip_;
stream & energies_->edashpot_;
stream & energies_->epbstrain_;
}
stream & b;
if (b) {
if (!pbProps_)
pbProps_ = NEWC(pbProps());
stream & pbProps_->pb_state_;
stream & pbProps_->pb_rmul_;
stream & pbProps_->pb_kn_;
stream & pbProps_->pb_ks_;
stream & pbProps_->pb_mcf_;
stream & pbProps_->pb_ten_;
stream & pbProps_->pb_coh_;
stream & pbProps_->pb_fa_;
stream & pbProps_->pb_F_;
stream & pbProps_->pb_M_;
}
}
stream & inheritanceField_;
stream & effectiveTranslationalStiffness_;
if (stream.getArchiveState()==ArchiveStream::Save || stream.getRestoreVersion() == getMinorVersion())
stream & rgap_;
if (stream.getArchiveState() == ArchiveStream::Save || stream.getRestoreVersion() > 1)
stream & userArea_;
}
void ContactModelLinearPBond::copy(const ContactModel *cm) {
ContactModelMechanical::copy(cm);
const ContactModelLinearPBond *in = dynamic_cast<const ContactModelLinearPBond*>(cm);
if (!in) throw std::runtime_error("Internal error: contact model dynamic cast failed.");
kn(in->kn());
ks(in->ks());
fric(in->fric());
lin_F(in->lin_F());
lin_S(in->lin_S());
lin_mode(in->lin_mode());
rgap(in->rgap());
if (in->hasDamping()) {
if (!dpProps_)
dpProps_ = NEWC(dpProps());
dp_nratio(in->dp_nratio());
dp_sratio(in->dp_sratio());
dp_mode(in->dp_mode());
dp_F(in->dp_F());
}
if (in->hasEnergies()) {
if (!energies_)
energies_ = NEWC(Energies());
estrain(in->estrain());
eslip(in->eslip());
edashpot(in->edashpot());
epbstrain(in->epbstrain());
}
if (in->hasPBond()) {
if (!pbProps_)
pbProps_ = NEWC(pbProps());
pbState(in->pbState());
pbRmul(in->pbRmul());
pbKn(in->pbKn());
pbKs(in->pbKs());
pbMCF(in->pbMCF());
pbTen(in->pbTen());
pbCoh(in->pbCoh());
pbFA(in->pbFA());
pbF(in->pbF());
pbM(in->pbM());
pbTransStiff(in->pbTransStiff());
pbAngStiff(in->pbAngStiff());
}
userArea_ = in->userArea_;
inheritanceField(in->inheritanceField());
effectiveTranslationalStiffness(in->effectiveTranslationalStiffness());
}
QVariant ContactModelLinearPBond::getProperty(uint i,const IContact *con) const {
QVariant var;
switch (i) {
case kwLinKn: return kn_;
case kwLinKs: return ks_;
case kwLinFric: return fric_;
case kwLinMode: return lin_mode_;
case kwLinF: var.setValue(lin_F_); return var;
case kwLinS: return lin_S_;
case kwRGap: return rgap_;
case kwEmod: {
const IContactMechanical *c(convert_getcast<IContactMechanical>(con));
if (c ==nullptr) return 0.0;
double rsq(std::max(c->getEnd1Curvature().y(),c->getEnd2Curvature().y()));
double rsum(0.0);
if (c->getEnd1Curvature().y())
rsum += 1.0/c->getEnd1Curvature().y();
if (c->getEnd2Curvature().y())
rsum += 1.0/c->getEnd2Curvature().y();
if (userArea_) {
#ifdef THREED
rsq = std::sqrt(userArea_ / dPi);
#else
rsq = userArea_ / 2.0;
#endif
rsum = rsq + rsq;
rsq = 1. / rsq;
}
#ifdef TWOD
return (kn_ * rsum * rsq / 2.0);
#else
return (kn_ * rsum * rsq * rsq) / dPi;
#endif
}
case kwKRatio: return (ks_ == 0.0) ? 0.0 : (kn_/ks_);
case kwDpNRatio: return dpProps_ ? dpProps_->dp_nratio_ : 0;
case kwDpSRatio: return dpProps_ ? dpProps_->dp_sratio_ : 0;
case kwDpMode: return dpProps_ ? dpProps_->dp_mode_ : 0;
case kwUserArea: return userArea_;
case kwDpF: {
dpProps_ ? var.setValue(dpProps_->dp_F_) : var.setValue(DVect(0.0));
return var;
}
case kwPbState: return pbProps_ ? pbProps_->pb_state_ : 0;
case kwPbRMul: return pbProps_ ? pbProps_->pb_rmul_ : 1.0;
case kwPbKn: return pbProps_ ? pbProps_->pb_kn_ : 0;
case kwPbKs: return pbProps_ ? pbProps_->pb_ks_ : 0;
case kwPbMcf: return pbProps_ ? pbProps_->pb_mcf_ : 1.0;
case kwPbTStrength: return pbProps_ ? pbProps_->pb_ten_ : 0.0;
case kwPbSStrength: {
if (!pbProps_) return 0.0;
const IContactMechanical *c(convert_getcast<IContactMechanical>(con));
double pbArea = pbData(c).x();
return pbShearStrength(pbArea);
}
case kwPbCoh: return pbProps_ ? pbProps_->pb_coh_ : 0;
case kwPbFa: return pbProps_ ? pbProps_->pb_fa_ : 0;
case kwPbSig: {
if (!pbProps_ || pbProps_->pb_state_ < 3) return 0.0;
const IContactMechanical *c(convert_getcast<IContactMechanical>(con));
return pbSMax(c).x();
}
case kwPbTau: {
if (!pbProps_ || pbProps_->pb_state_ < 3) return 0.0;
const IContactMechanical *c(convert_getcast<IContactMechanical>(con));
return pbSMax(c).y();
}
case kwPbF: {
pbProps_ ? var.setValue(pbProps_->pb_F_) : var.setValue(DVect(0.0));
return var;
}
case kwPbM: {
pbProps_ ? var.setValue(pbProps_->pb_M_) : var.setValue(DAVect(0.0));
return var;
}
case kwPbRadius: {
if (!pbProps_) return 0.0;
const IContactMechanical *c(convert_getcast<IContactMechanical>(con));
double Cmax1 = c->getEnd1Curvature().y();
double Cmax2 = c->getEnd2Curvature().y();
double br = pbProps_->pb_rmul_ * 1.0 / std::max(Cmax1,Cmax2);
if (userArea_)
#ifdef THREED
br = std::sqrt(userArea_ / dPi);
#else
br = userArea_ / 2.0;
#endif
return br;
}
case kwPbEmod: {
if (!pbProps_) return 0.0;
const IContactMechanical *c(convert_getcast<IContactMechanical>(con));
double rsum(0.0);
if (c->getEnd1Curvature().y())
rsum += 1.0/c->getEnd1Curvature().y();
if (c->getEnd2Curvature().y())
rsum += 1.0/c->getEnd2Curvature().y();
if (userArea_) {
#ifdef THREED
double rad = std::sqrt(userArea_ / dPi);
#else
double rad = userArea_ / 2.0;
#endif
rsum = 2 * rad;
}
double emod = pbProps_->pb_kn_ * rsum;
return emod;
}
case kwPbKRatio: {
if (!pbProps_) return 0.0;
return (pbProps_->pb_ks_ == 0.0) ? 0.0 : (pbProps_->pb_kn_/pbProps_->pb_ks_);
}
}
assert(0);
return QVariant();
}
bool ContactModelLinearPBond::getPropertyGlobal(uint i) const {
switch (i) {
case kwLinF:
case kwDpF:
case kwPbF:
return false;
}
return true;
}
bool ContactModelLinearPBond::setProperty(uint i,const QVariant &v,IContact *) {
pbProps pb;
dpProps dp;
switch (i) {
case kwLinKn: {
if (!v.canConvert<double>())
throw Exception("kn must be a double.");
double val(v.toDouble());
if (val<0.0)
throw Exception("Negative kn not allowed.");
kn_ = val;
return true;
}
case kwLinKs: {
if (!v.canConvert<double>())
throw Exception("ks must be a double.");
double val(v.toDouble());
if (val<0.0)
throw Exception("Negative ks not allowed.");
ks_ = val;
return true;
}
case kwLinFric: {
if (!v.canConvert<double>())
throw Exception("fric must be a double.");
double val(v.toDouble());
if (val<0.0)
throw Exception("Negative fric not allowed.");
fric_ = val;
return false;
}
case kwLinF: {
if (!v.canConvert<DVect>())
throw Exception("lin_force must be a vector.");
DVect val(v.value<DVect>());
lin_F_ = val;
return false;
}
case kwLinMode: {
if (!v.canConvert<uint>())
throw Exception("lin_mode must be 0 (absolute) or 1 (incremental).");
uint val(v.toUInt());
if (val>1)
throw Exception("lin_mode must be 0 (absolute) or 1 (incremental).");
lin_mode_ = val;
return false;
}
case kwRGap: {
if (!v.canConvert<double>())
throw Exception("Reference gap must be a double.");
double val(v.toDouble());
rgap_ = val;
return false;
}
case kwPbRMul: {
if (!v.canConvert<double>())
throw Exception("pb_rmul must be a double.");
double val(v.toDouble());
if (val<=0.0)
throw Exception("pb_rmul must be positive.");
if (val == 1.0 && !pbProps_)
return false;
if (!pbProps_)
pbProps_ = NEWC(pbProps());
pbProps_->pb_rmul_ = val;
return false;
}
case kwPbKn: {
if (!v.canConvert<double>())
throw Exception("pb_kn must be a double.");
double val(v.toDouble());
if (val<0.0)
throw Exception("Negative pb_kn not allowed.");
if (val == 0.0 && !pbProps_)
return false;
if (!pbProps_)
pbProps_ = NEWC(pbProps());
pbProps_->pb_kn_ = val;
return true;
}
case kwPbKs: {
if (!v.canConvert<double>())
throw Exception("pb_ks must be a double.");
double val(v.toDouble());
if (val<0.0)
throw Exception("Negative pb_ks not allowed.");
if (val == 0.0 && !pbProps_)
return false;
if (!pbProps_)
pbProps_ = NEWC(pbProps());
pbProps_->pb_ks_ = val;
return true;
}
case kwPbMcf: {
if (!v.canConvert<double>())
throw Exception("pb_mcf must be a double.");
double val(v.toDouble());
if (val<0.0)
throw Exception("Negative pb_mcf not allowed.");
if (val > 1.0)
throw Exception("pb_mcf must be lower or equal to 1.0.");
if (val == 1.0 && !pbProps_)
return false;
if (!pbProps_)
pbProps_ = NEWC(pbProps());
pbProps_->pb_mcf_ = val;
return false;
}
case kwPbTStrength: {
if (!v.canConvert<double>())
throw Exception("pb_ten must be a double.");
double val(v.toDouble());
if (val < 0.0)
throw Exception("Negative pb_ten not allowed.");
if (val == 0.0 && !pbProps_)
return false;
if (!pbProps_)
pbProps_ = NEWC(pbProps());
pbProps_->pb_ten_ = val;
return false;
}
case kwPbCoh: {
if (!v.canConvert<double>())
throw Exception("pb_coh must be a double.");
double val(v.toDouble());
if (val<0.0)
throw Exception("Negative pb_coh not allowed.");
if (val == 0.0 && !pbProps_)
return false;
if (!pbProps_)
pbProps_ = NEWC(pbProps());
pbProps_->pb_coh_ = val;
return false;
}
case kwPbFa: {
if (!v.canConvert<double>())
throw Exception("pb_fa must be a double.");
double val(v.toDouble());
if (val<0.0)
throw Exception("Negative pb_fa not allowed.");
if (val>=90.0)
throw Exception("pb_fa must be lower than 90.0 degrees.");
if (val == 0.0 && !pbProps_)
return false;
if (!pbProps_)
pbProps_ = NEWC(pbProps());
pbProps_->pb_fa_ = val;
return false;
}
case kwPbF: {
if (!v.canConvert<DVect>())
throw Exception("pb_force must be a vector.");
DVect val(v.value<DVect>());
if (val.fsum() == 0.0 && !pbProps_)
return false;
if (!pbProps_)
pbProps_ = NEWC(pbProps());
pbProps_->pb_F_ = val;
return false;
}
case kwPbM: {
DAVect val(0.0);
#ifdef TWOD
if (!v.canConvert<DAVect>() && !v.canConvert<double>())
throw Exception("pb_moment must be an angular vector.");
if (v.canConvert<DAVect>())
val = DAVect(v.value<DAVect>());
else
val = DAVect(v.toDouble());
#else
if (!v.canConvert<DAVect>() && !v.canConvert<DVect>())
throw Exception("pb_moment must be an angular vector.");
if (v.canConvert<DAVect>())
val = DAVect(v.value<DAVect>());
else
val = DAVect(v.value<DVect>());
#endif
if (val.fsum() == 0.0 && !pbProps_)
return false;
if (!pbProps_)
pbProps_ = NEWC(pbProps());
pbProps_->pb_M_ = val;
return false;
}
case kwDpNRatio: {
if (!v.canConvert<double>())
throw Exception("dp_nratio must be a double.");
double val(v.toDouble());
if (val<0.0)
throw Exception("Negative dp_nratio not allowed.");
if (val == 0.0 && !dpProps_)
return false;
if (!dpProps_)
dpProps_ = NEWC(dpProps());
dpProps_->dp_nratio_ = val;
return true;
}
case kwDpSRatio: {
if (!v.canConvert<double>())
throw Exception("dp_sratio must be a double.");
double val(v.toDouble());
if (val<0.0)
throw Exception("Negative dp_sratio not allowed.");
if (val == 0.0 && !dpProps_)
return false;
if (!dpProps_)
dpProps_ = NEWC(dpProps());
dpProps_->dp_sratio_ = val;
return true;
}
case kwDpMode: {
if (!v.canConvert<int>())
throw Exception("The viscous mode dp_mode must be 0, 1, 2, or 3.");
int val(v.toInt());
if (val == 0 && !dpProps_)
return false;
if (val < 0 || val > 3)
throw Exception("The viscous mode dp_mode must be 0, 1, 2, or 3.");
if (!dpProps_)
dpProps_ = NEWC(dpProps());
dpProps_->dp_mode_ = val;
return false;
}
case kwDpF: {
if (!v.canConvert<DVect>())
throw Exception("dp_force must be a vector.");
DVect val(v.value<DVect>());
if (val.fsum() == 0.0 && !dpProps_)
return false;
if (!dpProps_)
dpProps_ = NEWC(dpProps());
dpProps_->dp_F_ = val;
return false;
}
case kwUserArea: {
if (!v.canConvert<double>())
throw Exception("user_area must be a double.");
double val(v.toDouble());
if (val < 0.0)
throw Exception("Negative user_area not allowed.");
userArea_ = val;
return true;
}
}
// assert(0);
return false;
}
bool ContactModelLinearPBond::getPropertyReadOnly(uint i) const {
switch (i) {
case kwDpF:
case kwLinS:
case kwEmod:
case kwKRatio:
case kwPbState:
case kwPbRadius:
case kwPbSStrength:
case kwPbSig:
case kwPbTau:
case kwPbEmod:
case kwPbKRatio:
return true;
default:
break;
}
return false;
}
bool ContactModelLinearPBond::supportsInheritance(uint i) const {
switch (i) {
case kwLinKn:
case kwLinKs:
case kwLinFric:
return true;
default:
break;
}
return false;
}
QString ContactModelLinearPBond::getMethodArguments(uint i) const {
QString def = QString();
switch (i) {
case kwDeformability:
return "emod,kratio";
case kwPbDeformability:
return "emod,kratio";
case kwPbBond:
return "gap";
case kwPbUnbond:
return "gap";
}
return def;
}
bool ContactModelLinearPBond::setMethod(uint i,const QVector<QVariant> &vl,IContact *con) {
IContactMechanical *c(convert_getcast<IContactMechanical>(con));
switch (i) {
case kwDeformability: {
double emod;
double krat;
if (vl.at(0).isNull())
throw Exception("Argument emod must be specified with method deformability in contact model %1.",getName());
emod = vl.at(0).toDouble();
if (emod<0.0)
throw Exception("Negative emod not allowed in contact model %1.",getName());
if (vl.at(1).isNull())
throw Exception("Argument kratio must be specified with method deformability in contact model %1.",getName());
krat = vl.at(1).toDouble();
if (krat<0.0)
throw Exception("Negative linear stiffness ratio not allowed in contact model %1.",getName());
double rsq(std::max(c->getEnd1Curvature().y(),c->getEnd2Curvature().y()));
double rsum(0.0);
if (c->getEnd1Curvature().y())
rsum += 1.0/c->getEnd1Curvature().y();
if (c->getEnd2Curvature().y())
rsum += 1.0/c->getEnd2Curvature().y();
if (userArea_) {
#ifdef THREED
rsq = std::sqrt(userArea_ / dPi);
#else
rsq = userArea_ / 2.0;
#endif
rsum = rsq + rsq;
rsq = 1. / rsq;
}
#ifdef TWOD
kn_ = 2.0 * emod / (rsq * rsum);
#else
kn_ = dPi * emod / (rsq * rsq * rsum);
#endif
ks_ = (krat == 0.0) ? 0.0 : kn_ / krat;
setInheritance(1,false);
setInheritance(2,false);
return true;
}
case kwPbDeformability: {
//if (!pbProps_ || pbProps_->pb_state_ != 3) return false;
double emod;
double krat;
if (vl.at(0).isNull())
throw Exception("Argument emod must be specified with method pb_deformability in contact model %1.",getName());
emod = vl.at(0).toDouble();
if (emod<0.0)
throw Exception("Negative emod not allowed in contact model %1.",getName());
if (vl.at(1).isNull())
throw Exception("Argument kratio must be specified with method pb_deformability in contact model %1.",getName());
krat = vl.at(1).toDouble();
if (krat<0.0)
throw Exception("Negative parallel bond stiffness ratio not allowed in contact model %1.",getName());
double rsum(0.0);
if (c->getEnd1Curvature().y())
rsum += 1.0/c->getEnd1Curvature().y();
if (c->getEnd2Curvature().y())
rsum += 1.0/c->getEnd2Curvature().y();
if (!pbProps_)
pbProps_ = NEWC(pbProps());
if (userArea_)
#ifdef THREED
rsum = 2 * std::sqrt(userArea_ / dPi);
#else
rsum = 2 * userArea_ / 2.0;
#endif
pbProps_->pb_kn_ = emod / rsum;
pbProps_->pb_ks_ = (krat == 0.0) ? 0.0 : pbProps_->pb_kn_ / krat;
return true;
}
case kwPbBond: {
if (pbProps_ && pbProps_->pb_state_ == 3) return false;
double mingap = -1.0 * limits<double>::max();
double maxgap = 0;
if (vl.at(0).canConvert<Double>())
maxgap = vl.at(0).toDouble();
else if (vl.at(0).canConvert<DVect2>()) {
DVect2 value = vl.at(0).value<DVect2>();
mingap = value.minComp();
maxgap = value.maxComp();
} else if (!vl.at(0).isNull())
throw Exception("gap value %1 not recognized in method bond in contact model %2.",vl.at(0),getName());
double gap = c->getGap();
if ( gap >= mingap && gap <= maxgap) {
if (pbProps_)
pbProps_->pb_state_ = 3;
else {
pbProps_ = NEWC(pbProps());
pbProps_->pb_state_ = 3;
}
return true;
}
return false;
}
case kwPbUnbond: {
if (!pbProps_ || pbProps_->pb_state_ == 0) return false;
double mingap = -1.0 * limits<double>::max();
double maxgap = 0;
if (vl.at(0).canConvert<double>())
maxgap = vl.at(0).toDouble();
else if (vl.at(0).canConvert<DVect2>()) {
DVect2 value = vl.at(0).value<DVect2>();
mingap = value.minComp();
maxgap = value.maxComp();
}
else if (!vl.at(0).isNull())
throw Exception("gap value %1 not recognized in method unbond in contact model %2.",vl.at(0),getName());
double gap = c->getGap();
if ( gap >= mingap && gap <= maxgap) {
pbProps_->pb_state_ = 0;
return true;
}
return false;
}
case kwArea: {
if (!userArea_) {
double rsq(1./std::max(c->getEnd1Curvature().y(),c->getEnd2Curvature().y()));
#ifdef THREED
userArea_ = rsq * rsq * dPi;
#else
userArea_ = rsq * 2.0;
#endif
}
return true;
}
}
return false;
}
double ContactModelLinearPBond::getEnergy(uint i) const {
double ret(0.0);
if (!energies_)
return ret;
switch (i) {
case kwEStrain: return energies_->estrain_;
case kwESlip: return energies_->eslip_;
case kwEDashpot: return energies_->edashpot_;
case kwEPbStrain:return energies_->epbstrain_;
}
assert(0);
return ret;
}
bool ContactModelLinearPBond::getEnergyAccumulate(uint i) const {
switch (i) {
case kwEStrain: return false;
case kwESlip: return true;
case kwEDashpot: return true;
case kwEPbStrain: return false;
}
assert(0);
return false;
}
void ContactModelLinearPBond::setEnergy(uint i,const double &d) {
if (!energies_) return;
switch (i) {
case kwEStrain: energies_->estrain_ = d; return;
case kwESlip: energies_->eslip_ = d; return;
case kwEDashpot: energies_->edashpot_ = d; return;
case kwEPbStrain: energies_->epbstrain_= d; return;
}
assert(0);
return;
}
bool ContactModelLinearPBond::validate(ContactModelMechanicalState *state,const double &) {
assert(state);
const IContactMechanical *c = state->getMechanicalContact();
assert(c);
if (state->trackEnergy_)
activateEnergy();
if (inheritanceField_ & linKnMask)
updateKn(c);
if (inheritanceField_ & linKsMask)
updateKs(c);
if (inheritanceField_ & linFricMask)
updateFric(c);
updateEffectiveStiffness(state);
return checkActivity(state->gap_);
}
static const QString knstr("kn");
bool ContactModelLinearPBond::updateKn(const IContactMechanical *con) {
assert(con);
QVariant v1 = con->getEnd1()->getProperty(knstr);
QVariant v2 = con->getEnd2()->getProperty(knstr);
if (!v1.isValid() || !v2.isValid())
return false;
double kn1 = v1.toDouble();
double kn2 = v2.toDouble();
double val = kn_;
if (kn1 && kn2)
kn_ = kn1*kn2/(kn1+kn2);
else if (kn1)
kn_ = kn1;
else if (kn2)
kn_ = kn2;
return ( (kn_ != val) );
}
static const QString ksstr("ks");
bool ContactModelLinearPBond::updateKs(const IContactMechanical *con) {
assert(con);
QVariant v1 = con->getEnd1()->getProperty(ksstr);
QVariant v2 = con->getEnd2()->getProperty(ksstr);
if (!v1.isValid() || !v2.isValid())
return false;
double ks1 = v1.toDouble();
double ks2 = v2.toDouble();
double val = ks_;
if (ks1 && ks2)
ks_ = ks1*ks2/(ks1+ks2);
else if (ks1)
ks_ = ks1;
else if (ks2)
ks_ = ks2;
return ( (ks_ != val) );
}
static const QString fricstr("fric");
bool ContactModelLinearPBond::updateFric(const IContactMechanical *con) {
assert(con);
QVariant v1 = con->getEnd1()->getProperty(fricstr);
QVariant v2 = con->getEnd2()->getProperty(fricstr);
if (!v1.isValid() || !v2.isValid())
return false;
double fric1 = std::max(0.0,v1.toDouble());
double fric2 = std::max(0.0,v2.toDouble());
double val = fric_;
fric_ = std::min(fric1,fric2);
return ( (fric_ != val) );
}
bool ContactModelLinearPBond::endPropertyUpdated(const QString &name,const IContactMechanical *c) {
assert(c);
QStringList availableProperties = getProperties().simplified().replace(" ","").split(",",QString::SkipEmptyParts);
QRegExp rx(name,Qt::CaseInsensitive);
int idx = availableProperties.indexOf(rx)+1;
bool ret=false;
if (idx<=0)
return ret;
switch(idx) {
case kwLinKn: { //kn
if (inheritanceField_ & linKnMask)
ret = updateKn(c);
break;
}
case kwLinKs: { //ks
if (inheritanceField_ & linKsMask)
ret =updateKs(c);
break;
}
case kwLinFric: { //fric
if (inheritanceField_ & linFricMask)
updateFric(c);
break;
}
}
return ret;
}
void ContactModelLinearPBond::updateEffectiveStiffness(ContactModelMechanicalState *state) {
DVect2 ret(kn_,ks_);
// account for viscous damping
if (dpProps_) {
DVect2 correct(1.0);
if (dpProps_->dp_nratio_)
correct.rx() = sqrt(1.0+dpProps_->dp_nratio_*dpProps_->dp_nratio_) - dpProps_->dp_nratio_;
if (dpProps_->dp_sratio_)
correct.ry() = sqrt(1.0+dpProps_->dp_sratio_*dpProps_->dp_sratio_) - dpProps_->dp_sratio_;
ret /= (correct*correct);
}
effectiveTranslationalStiffness_ = ret;
if (isBonded()) {
double Cmin1 = state->end1Curvature_.x();
double Cmax1 = state->end1Curvature_.y();
double Cmax2 = state->end2Curvature_.y();
double dthick = (Cmin1 == 0.0) ? state->end1Extent_.x() : 0.0;
double br = pbProps_->pb_rmul_ * 1.0 / std::max(Cmax1,Cmax2);
if (userArea_)
#ifdef THREED
br = std::sqrt(userArea_ / dPi);
#else
br = userArea_ / 2.0;
#endif
double br2 = br*br;
double pbArea = dthick <= 0.0 ? dPi*br2 : 2.0*br*dthick;
double bi = dthick <= 0.0 ? 0.25*pbArea*br2 : 2.0*br*br2*dthick/3.0;
pbProps_->pbTransStiff_.rx() = pbProps_->pb_kn_*pbArea;
pbProps_->pbTransStiff_.ry() = pbProps_->pb_ks_*pbArea;
#if DIM==3
pbProps_->pbAngStiff_.rx() = pbProps_->pb_ks_* 2.0 * bi;
pbProps_->pbAngStiff_.ry() = pbProps_->pb_kn_* bi;
#endif
pbProps_->pbAngStiff_.rz() = pbProps_->pb_kn_* bi;
}
}
double ContactModelLinearPBond::pbStrainEnergy() const {
double ret(0.0);
if (pbProps_->pb_kn_)
ret = 0.5 * pbProps_->pb_F_.x() * pbProps_->pb_F_.x() / pbProps_->pbTransStiff_.x();
if (pbProps_->pb_ks_) {
DVect tmp = pbProps_->pb_F_;
tmp.rx() = 0.0;
double smag2 = tmp.mag2();
ret += 0.5 * smag2 / pbProps_->pbTransStiff_.y();
}
#ifdef THREED
if (pbProps_->pbAngStiff_.x())
ret += 0.5 * pbProps_->pb_M_.x() * pbProps_->pb_M_.x() / pbProps_->pbAngStiff_.x();
#endif
if (pbProps_->pbAngStiff_.z()) {
DAVect tmp = pbProps_->pb_M_;
#ifdef THREED
tmp.rx() = 0.0;
double smag2 = tmp.mag2();
#else
double smag2 = tmp.z() * tmp.z();
#endif
ret += 0.5 * smag2 / pbProps_->pbAngStiff_.z();
}
return ret;
}
bool ContactModelLinearPBond::forceDisplacementLaw(ContactModelMechanicalState *state,const double ×tep) {
assert(state);
double overlap = rgap_ - state->gap_;
DVect trans = state->relativeTranslationalIncrement_;
double correction = 1.0;
if (state->activated()) {
if (cmEvents_[fActivated] >= 0) {
FArray<QVariant,2> arg;
QVariant v;
IContact * c = const_cast<IContact*>(state->getContact());
TPtr<IThing> t(c->getIThing());
v.setValue(t);
arg.push_back(v);
IFishCallList *fi = const_cast<IFishCallList*>(state->getProgram()->findInterface<IFishCallList>());
fi->setCMFishCallArguments(c,arg,cmEvents_[fActivated]);
}
if (lin_mode_ == 0 && trans.x()) {
correction = -1.0*overlap / trans.x();
if (correction < 0)
correction = 1.0;
}
}
#ifdef THREED
DVect norm(trans.x(),0.0,0.0);
#else
DVect norm(trans.x(),0.0);
#endif
DAVect ang = state->relativeAngularIncrement_;
DVect ss_F_old = lin_F_;
if (lin_mode_==0)
lin_F_.rx() = overlap * kn_;
else
lin_F_.rx() -= correction * norm.x() * kn_;
lin_F_.rx() = std::max(0.0,lin_F_.x());
DVect u_s = trans;
u_s.rx() = 0.0;
DVect sforce = lin_F_ - u_s * ks_ * correction;
sforce.rx() = 0.0;
// Make sure that the shear force opposses the direction of translation - otherwise you can
// have strange behavior
//for (int j=1; j<dim; ++j)
//{
// qDebug()<<sforce.dof(j)<<trans.dof(j);
// if (sign<double>(1,sforce.dof(j)) == sign<double>(1,trans.dof(j)))
// sforce.rdof(j) = 0.0;
//}
// Resolve sliding
if (state->canFail_) {
double crit = lin_F_.x() * fric_;
double sfmag = sforce.mag();
if (sfmag > crit) {
double rat = crit / sfmag;
sforce *= rat;
if (!lin_S_ && cmEvents_[fSlipChange] >= 0) {
FArray<QVariant,3> arg;
QVariant p1;
IContact * c = const_cast<IContact*>(state->getContact());
TPtr<IThing> t(c->getIThing());
p1.setValue(t);
arg.push_back(p1);
p1.setValue(0);
arg.push_back(p1);
IFishCallList *fi = const_cast<IFishCallList*>(state->getProgram()->findInterface<IFishCallList>());
fi->setCMFishCallArguments(c,arg,cmEvents_[fSlipChange]);
}
lin_S_ = true;
} else {
if (lin_S_) {
if (cmEvents_[fSlipChange] >= 0) {
FArray<QVariant,3> arg;
QVariant p1;
IContact * c = const_cast<IContact*>(state->getContact());
TPtr<IThing> t(c->getIThing());
p1.setValue(t);
arg.push_back(p1);
p1.setValue(1);
arg.push_back(p1);
IFishCallList *fi = const_cast<IFishCallList*>(state->getProgram()->findInterface<IFishCallList>());
fi->setCMFishCallArguments(c,arg,cmEvents_[fSlipChange]);
}
lin_S_ = false;
}
}
}
sforce.rx() = lin_F_.x();
lin_F_ = sforce; // total force in linear contact model
// Account for dashpot forces
if (dpProps_) {
dpProps_->dp_F_.fill(0.0);
double vcn(0.0), vcs(0.0);
setDampCoefficients(state->inertialMass_,&vcn,&vcs);
// Need to change behavior based on the dp_mode
if (dpProps_->dp_mode_ == 0) { // Damp all components
dpProps_->dp_F_ = u_s * (-1.0* vcs) / timestep; // shear component
dpProps_->dp_F_ -= norm * vcn / timestep; // normal component
} else if (dpProps_->dp_mode_ == 1) { // limit the tensile
dpProps_->dp_F_ -= norm * vcn / timestep; // normal component
if (dpProps_->dp_F_.x() + lin_F_.x() < 0)
dpProps_->dp_F_.rx() = - lin_F_.rx();
} else if (dpProps_->dp_mode_ == 2) { // limit the shear
if (!lin_S_)
dpProps_->dp_F_ = u_s * (-1.0* vcs) / timestep; // shear component
} else {
if (!lin_S_)
dpProps_->dp_F_ = u_s * (-1.0* vcs) / timestep; // shear component
dpProps_->dp_F_ -= norm * vcn / timestep; // normal component
if (dpProps_->dp_F_.x() + lin_F_.x() < 0)
dpProps_->dp_F_.rx() = - lin_F_.rx();
}
}
// Account for parallel bonds
bool doPb = false;
if (pbProps_ && pbProps_->pb_state_ > 2) {
doPb = true;
// Parallel Bond Logic:
// bond area and inertia
// minimal curvature of end1
double Cmin1 = state->end1Curvature_.x();
double Cmax1 = state->end1Curvature_.y();
double Cmax2 = state->end2Curvature_.y();
double dthick = (Cmin1 == 0.0) ? state->end1Extent_.x() : 0.0;
double br = pbProps_->pb_rmul_ * 1.0 / std::max(Cmax1,Cmax2);
if (userArea_)
#ifdef THREED
br = std::sqrt(userArea_ / dPi);
#else
br = userArea_ / 2.0;
#endif
double br2 = br*br;
double pbArea = dthick <= 0.0 ? dPi*br2 : 2.0*br*dthick;
double bi = dthick <= 0.0 ? 0.25*pbArea*br2 : 2.0*br*br2*dthick/3.0;
pbProps_->pbTransStiff_.rx() = pbProps_->pb_kn_*pbArea;
pbProps_->pbTransStiff_.ry() = pbProps_->pb_ks_*pbArea;
/* elastic force increments */
pbProps_->pb_F_ -= norm *(pbProps_->pb_kn_*pbArea) + u_s * (pbProps_->pb_ks_*pbArea);
/* elastic moment increments */
//DAVect pbMomentInc(0.0);
#if DIM==3
pbProps_->pbAngStiff_.rx() = pbProps_->pb_ks_* 2.0 * bi;
pbProps_->pbAngStiff_.ry() = pbProps_->pb_kn_* bi;
#endif
pbProps_->pbAngStiff_.rz() = pbProps_->pb_kn_* bi;
DAVect pbMomentInc = ang * pbProps_->pbAngStiff_ *(-1.0);
pbProps_->pb_M_ += pbMomentInc;
/* check bond failure */
if (state->canFail_) {
/* maximum stresses */
double dbend = sqrt(pbProps_->pb_M_.y()*pbProps_->pb_M_.y() + pbProps_->pb_M_.z()*pbProps_->pb_M_.z());
double dtwist = pbProps_->pb_M_.x();
DVect bfs(pbProps_->pb_F_);
bfs.rx() = 0.0;
double dbfs = bfs.mag();
double nsmax = -(pbProps_->pb_F_.x() / pbArea) + pbProps_->pb_mcf_ * dbend * br/bi;
double ssmax = dbfs / pbArea + pbProps_->pb_mcf_ * std::abs(dtwist) * 0.5* br/bi;
double ss ;
if (nsmax >= pbProps_->pb_ten_) {
// Failed in tension
double se = pbStrainEnergy(); // bond strain energy at the onset of failure
pbProps_->pb_state_ = 1;
pbProps_->pb_F_.fill(0.0);
pbProps_->pb_M_.fill(0.0);
if (cmEvents_[fBondBreak] >= 0) {
FArray<QVariant,3> arg;
QVariant p1;
IContact * c = const_cast<IContact*>(state->getContact());
TPtr<IThing> t(c->getIThing());
p1.setValue(t);
arg.push_back(p1);
p1.setValue(pbProps_->pb_state_);
arg.push_back(p1);
p1.setValue(pbProps_->pb_ten_);
arg.push_back(p1);
p1.setValue(se);
arg.push_back(p1);
IFishCallList *fi = const_cast<IFishCallList*>(state->getProgram()->findInterface<IFishCallList>());
fi->setCMFishCallArguments(c,arg,cmEvents_[fBondBreak]);
}
} else if ((ss = pbShearStrength(pbArea)) <= ssmax) {
// Failed in shear
double se = pbStrainEnergy(); // bond strain energy at the onset of failure
pbProps_->pb_state_ = 2;
pbProps_->pb_F_.fill(0.0);
pbProps_->pb_M_.fill(0.0);
if (cmEvents_[fBondBreak] >= 0) {
FArray<QVariant,3> arg;
QVariant p1;
IContact * c = const_cast<IContact*>(state->getContact());
TPtr<IThing> t(c->getIThing());
p1.setValue(t);
arg.push_back(p1);
p1.setValue(pbProps_->pb_state_);
arg.push_back(p1);
p1.setValue(ss);
arg.push_back(p1);
p1.setValue(se);
arg.push_back(p1);
IFishCallList *fi = const_cast<IFishCallList*>(state->getProgram()->findInterface<IFishCallList>());
fi->setCMFishCallArguments(c,arg,cmEvents_[fBondBreak]);
}
}
}
}
// Compute energies
if (state->trackEnergy_) {
assert(energies_);
energies_->estrain_ = 0.0;
energies_->epbstrain_ = 0.0;
if (kn_)
energies_->estrain_ = 0.5 * lin_F_.x()* lin_F_.x() /kn_;
if (ks_) {
DVect s = lin_F_;
s.rx() = 0.0;
double smag2 = s.mag2();
energies_->estrain_ += 0.5* smag2 / ks_ ;
if (lin_S_) {
ss_F_old.rx() = 0.0;
DVect avg_F_s = (s + ss_F_old)*0.5;
DVect u_s_el = (s - ss_F_old) / ks_;
energies_->eslip_ -= std::min(0.0,(avg_F_s | (u_s + u_s_el)));
}
}
if (dpProps_)
energies_->edashpot_ -= dpProps_->dp_F_ | trans;
if (doPb)
energies_->epbstrain_ = pbStrainEnergy();
}
assert(lin_F_ == lin_F_);
return checkActivity(state->gap_);
}
bool ContactModelLinearPBond::thermalCoupling(ContactModelMechanicalState *ms,ContactModelThermalState *ts, IContactThermal *ct,const double &) {
bool ret = false;
if (!pbProps_) return ret;
if (pbProps_->pb_state_ < 3) return ret;
int idx = ct->getModel()->getContactModel()->isProperty("thexp");
if (idx<=0 ) return ret;
double thexp = (ct->getModel()->getContactModel()->getProperty(idx)).toDouble();
double length = ts->length_;
double delTemp =ts->tempInc_;
double delUn = length * thexp * delTemp;
if (delUn == 0.0) return ret;
double dthick = 0.0;
double Cmin1 = ms->end1Curvature_.x();
double Cmax1 = ms->end1Curvature_.y();
double Cmin2 = ms->end2Curvature_.x();
double Cmax2 = ms->end2Curvature_.y();
Cmin2;
if (Cmin1 == 0.0)
dthick = ms->end1Extent_.x();
double br = pbProps_->pb_rmul_ * 1.0 / std::max(Cmax1,Cmax2);
if (userArea_)
#ifdef THREED
br = std::sqrt(userArea_ / dPi);
#else
br = userArea_ / 2.0;
#endif
double br2 = br*br;
double pbArea = dthick <= 0.0 ? dPi*br2 : 2.0*br*dthick;
//
DVect finc(0.0);
finc.rx() = 1.0;
finc *= pbProps_->pb_kn_*pbArea*delUn;
pbProps_->pb_F_ += finc;
//ms->force_ += finc;
// The state force has been updated - update the state with the resulting torques
//ms->getMechanicalContact()->updateResultingTorquesLocal(ms->force_,&ms->momentOn1_,&ms->momentOn2_);
ret = true;
return ret;
}
void ContactModelLinearPBond::setForce(const DVect &v,IContact *c) {
lin_F(v);
if (v.x() > 0)
rgap_ = c->getGap() + v.x() / kn_;
}
void ContactModelLinearPBond::propagateStateInformation(IContactModelMechanical* old,const CAxes &oldSystem,const CAxes &newSystem) {
// Only do something if the contact model is of the same type
if (old->getContactModel()->getName().compare("linearpbond",Qt::CaseInsensitive) == 0 && !isBonded()) {
ContactModelLinearPBond *oldCm = (ContactModelLinearPBond *)old;
#ifdef THREED
// Need to rotate just the shear component from oldSystem to newSystem
// Step 1 - rotate oldSystem so that the normal is the same as the normal of newSystem
DVect axis = oldSystem.e1() & newSystem.e1();
double c, ang, s;
DVect re2;
if (!checktol(axis.abs().maxComp(),0.0,1.0,1000)) {
axis = axis.unit();
c = oldSystem.e1()|newSystem.e1();
if (c > 0)
c = std::min(c,1.0);
else
c = std::max(c,-1.0);
ang = acos(c);
s = sin(ang);
double t = 1. - c;
DMatrix<3,3> rm;
rm.get(0,0) = t*axis.x()*axis.x() + c;
rm.get(0,1) = t*axis.x()*axis.y() - axis.z()*s;
rm.get(0,2) = t*axis.x()*axis.z() + axis.y()*s;
rm.get(1,0) = t*axis.x()*axis.y() + axis.z()*s;
rm.get(1,1) = t*axis.y()*axis.y() + c;
rm.get(1,2) = t*axis.y()*axis.z() - axis.x()*s;
rm.get(2,0) = t*axis.x()*axis.z() - axis.y()*s;
rm.get(2,1) = t*axis.y()*axis.z() + axis.x()*s;
rm.get(2,2) = t*axis.z()*axis.z() + c;
re2 = rm*oldSystem.e2();
}
else
re2 = oldSystem.e2();
// Step 2 - get the angle between the oldSystem rotated shear and newSystem shear
axis = re2 & newSystem.e2();
DVect2 tpf;
DMatrix<2,2> m;
if (!checktol(axis.abs().maxComp(),0.0,1.0,1000)) {
axis = axis.unit();
c = re2|newSystem.e2();
if (c > 0)
c = std::min(c,1.0);
else
c = std::max(c,-1.0);
ang = acos(c);
if (!checktol(axis.x(),newSystem.e1().x(),1.0,100))
ang *= -1;
s = sin(ang);
m.get(0,0) = c;
m.get(1,0) = s;
m.get(0,1) = -m.get(1,0);
m.get(1,1) = m.get(0,0);
tpf = m*DVect2(oldCm->lin_F_.y(),oldCm->lin_F_.z());
} else {
m.get(0,0) = 1.;
m.get(0,1) = 0.;
m.get(1,0) = 0.;
m.get(1,1) = 1.;
tpf = DVect2(oldCm->lin_F_.y(),oldCm->lin_F_.z());
}
DVect pforce = DVect(0,tpf.x(),tpf.y());
#else
oldSystem;
newSystem;
DVect pforce = DVect(0,oldCm->lin_F_.y());
#endif
for (int i=1; i<dim; ++i)
lin_F_.rdof(i) += pforce.dof(i);
oldCm->lin_F_ = DVect(0.0);
if (dpProps_ && oldCm->dpProps_) {
#ifdef THREED
tpf = m*DVect2(oldCm->dpProps_->dp_F_.y(),oldCm->dpProps_->dp_F_.z());
pforce = DVect(oldCm->dpProps_->dp_F_.x(),tpf.x(),tpf.y());
#else
pforce = oldCm->dpProps_->dp_F_;
#endif
dpProps_->dp_F_ += pforce;
oldCm->dpProps_->dp_F_ = DVect(0.0);
}
if(oldCm->getEnergyActivated()) {
activateEnergy();
energies_->estrain_ = oldCm->energies_->estrain_;
energies_->eslip_ = oldCm->energies_->eslip_;
energies_->edashpot_ = oldCm->energies_->edashpot_;
energies_->epbstrain_ = oldCm->energies_->epbstrain_;
oldCm->energies_->estrain_ = 0.0;
oldCm->energies_->edashpot_ = 0.0;
oldCm->energies_->eslip_ = 0.0;
oldCm->energies_->epbstrain_ = 0.0;
}
rgap_ = oldCm->rgap_;
}
assert(lin_F_ == lin_F_);
}
void ContactModelLinearPBond::setNonForcePropsFrom(IContactModel *old) {
// Only do something if the contact model is of the same type
if (old->getName().compare("linearpbond",Qt::CaseInsensitive) == 0 && !isBonded()) {
ContactModelLinearPBond *oldCm = (ContactModelLinearPBond *)old;
kn_ = oldCm->kn_;
ks_ = oldCm->ks_;
fric_ = oldCm->fric_;
lin_mode_ = oldCm->lin_mode_;
rgap_ = oldCm->rgap_;
userArea_ = oldCm->userArea_;
if (oldCm->dpProps_) {
if (!dpProps_)
dpProps_ = NEWC(dpProps());
dpProps_->dp_nratio_ = oldCm->dpProps_->dp_nratio_;
dpProps_->dp_sratio_ = oldCm->dpProps_->dp_sratio_;
dpProps_->dp_mode_ = oldCm->dpProps_->dp_mode_;
}
if (oldCm->pbProps_) {
if (!pbProps_)
pbProps_ = NEWC(pbProps());
pbProps_->pb_rmul_ = oldCm->pbProps_->pb_rmul_;
pbProps_->pb_kn_ = oldCm->pbProps_->pb_kn_;
pbProps_->pb_ks_ = oldCm->pbProps_->pb_ks_;
pbProps_->pb_mcf_ = oldCm->pbProps_->pb_mcf_;
pbProps_->pb_fa_ = oldCm->pbProps_->pb_fa_;
pbProps_->pb_state_ = oldCm->pbProps_->pb_state_;
pbProps_->pb_coh_ = oldCm->pbProps_->pb_coh_;
pbProps_->pb_ten_ = oldCm->pbProps_->pb_ten_;
pbProps_->pbTransStiff_ = oldCm->pbProps_->pbTransStiff_;
pbProps_->pbAngStiff_ = oldCm->pbProps_->pbAngStiff_;
}
}
}
DVect ContactModelLinearPBond::getForce(const IContactMechanical *) const {
DVect ret(lin_F_);
if (dpProps_)
ret += dpProps_->dp_F_;
if (pbProps_)
ret += pbProps_->pb_F_;
return ret;
}
DAVect ContactModelLinearPBond::getMomentOn1(const IContactMechanical *c) const {
DVect force = getForce(c);
DAVect ret(0.0);
if (pbProps_)
ret = pbProps_->pb_M_;
c->updateResultingTorqueOn1Local(force,&ret);
return ret;
}
DAVect ContactModelLinearPBond::getMomentOn2(const IContactMechanical *c) const {
DVect force = getForce(c);
DAVect ret(0.0);
if (pbProps_)
ret = pbProps_->pb_M_;
c->updateResultingTorqueOn2Local(force,&ret);
return ret;
}
DVect3 ContactModelLinearPBond::pbData(const IContactMechanical *c) const {
double Cmin1 = c->getEnd1Curvature().x();
double Cmax1 = c->getEnd1Curvature().y();
double Cmax2 = c->getEnd2Curvature().y();
double dthick = (Cmin1 == 0.0) ? c->getEnd1Extent().x() : 0.0;
double br = pbProps_->pb_rmul_ * 1.0 / std::max(Cmax1,Cmax2);
if (userArea_)
#ifdef THREED
br = std::sqrt(userArea_ / dPi);
#else
br = userArea_ / 2.0;
#endif
double br2 = br*br;
double pbArea = dthick <= 0.0 ? dPi*br2 : 2.0*br*dthick;
double bi = dthick <= 0.0 ? 0.25*pbArea*br2 : 2.0*br*br2*dthick/3.0;
return DVect3(pbArea,bi,br);
}
DVect2 ContactModelLinearPBond::pbSMax(const IContactMechanical *c) const {
DVect3 data = pbData(c);
double pbArea = data.x();
double bi = data.y();
double br = data.z();
/* maximum stresses */
double dbend = sqrt(pbProps_->pb_M_.y()*pbProps_->pb_M_.y() + pbProps_->pb_M_.z()*pbProps_->pb_M_.z());
double dtwist = pbProps_->pb_M_.x();
DVect bfs(pbProps_->pb_F_);
bfs.rx() = 0.0;
double dbfs = bfs.mag();
double nsmax = -(pbProps_->pb_F_.x() / pbArea) + pbProps_->pb_mcf_ * dbend * br/bi;
double ssmax = dbfs / pbArea + pbProps_->pb_mcf_ * std::abs(dtwist) * 0.5* br/bi;
return DVect2(nsmax,ssmax);
}
double ContactModelLinearPBond::pbShearStrength(const double &pbArea) const {
if (!pbProps_) return 0.0;
double sig = -1.0*pbProps_->pb_F_.x() / pbArea;
double nstr = pbProps_->pb_state_ > 2 ? pbProps_->pb_ten_ : 0.0;
return sig <= nstr ? pbProps_->pb_coh_ - std::tan(dDegrad*pbProps_->pb_fa_)*sig
: pbProps_->pb_coh_ - std::tan(dDegrad*pbProps_->pb_fa_)*nstr;
}
void ContactModelLinearPBond::setDampCoefficients(const double &mass,double *vcn,double *vcs) {
*vcn = dpProps_->dp_nratio_ * 2.0 * sqrt(mass*(kn_));
*vcs = dpProps_->dp_sratio_ * 2.0 * sqrt(mass*(ks_));
}
} // namespace itascaxd
// EoF
|
Was this helpful? ... | PFC 6.0 © 2019, Itasca | Updated: Nov 19, 2021 |