Adhesive Rolling Resistance Linear Model
See this page for the documentation of this contact model.
contactmodelarrlinear.h
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417  | #pragma once
// contactmodelARRLinear.h
#include "contactmodel/src/contactmodelmechanical.h"
#ifdef ARRLINEAR_LIB
#  define ARRLINEAR_EXPORT EXPORT_TAG
#elif defined(NO_MODEL_IMPORT)
#  define ARRLINEAR_EXPORT
#else
#  define ARRLINEAR_EXPORT IMPORT_TAG
#endif
namespace cmodelsxd {
    using namespace itasca;
    class ContactModelARRLinear : public ContactModelMechanical {
    public:
        // Constructor: Set default values for contact model properties.
        ARRLINEAR_EXPORT ContactModelARRLinear();
        // Destructor, called when contact is deleted: free allocated memory, etc.
        ARRLINEAR_EXPORT virtual ~ContactModelARRLinear();
        // Contact model name (used as keyword for commands and FISH).
        virtual QString  getName() const { return "arrlinear"; }
        // The index provides a quick way to determine the type of contact model.
        // Each type of contact model in PFC must have a unique index; this is assigned
        // by PFC when the contact model is loaded. This index should be set to -1
        virtual void     setIndex(int i) { index_=i;}
        virtual int      getIndex() const {return index_;}
        // Contact model version number (e.g., MyModel05_1). The version number can be
        // accessed during the save-restore operation (within the archive method,
        // testing {stream.getRestoreVersion() == getMinorVersion()} to allow for 
        // future modifications to the contact model data structure.
        virtual uint     getMinorVersion() const;
        // Copy the state information to a newly created contact model.
        // Provide access to state information, for use by copy method.
        virtual void     copy(const ContactModel *c) override;
        // Provide save-restore capability for the state information.
        virtual void     archive(ArchiveStream &); 
        // Enumerator for the properties.
        enum PropertyKeys { 
              kwKn=1
            , kwKs                            
            , kwFric   
            , kwLinF
            , kwLinS
            , kwLinMode
            , kwRGap
            , kwEmod
            , kwKRatio
            , kwDpNRatio 
            , kwDpSRatio
            , kwDpMode 
            , kwDpF
            , kwResFric
            , kwResMoment
            , kwResS
            , kwResKr
            , kwAdhesiveF0
            , kwAdhesiveD0
            , kwAdhesiveF
            , kwUserArea
        };
        // Contact model property names in a comma separated list. The order corresponds with
        // the order of the PropertyKeys enumerator above. One can visualize any of these 
        // properties in PFC automatically. 
        virtual QString  getProperties() const { 
            return "kn"
                   ",ks"
                   ",fric"
                   ",lin_force"
                   ",lin_slip"
                   ",lin_mode"
                   ",rgap"
                   ",emod"
                   ",kratio"
                   ",dp_nratio"
                   ",dp_sratio"
                   ",dp_mode"
                   ",dp_force"
                   ",rr_fric"
                   ",rr_moment"
                   ",rr_slip"
                   ",rr_kr"
                   ",adh_f0"
                   ",adh_d0"
                   ",adh_force"
                   ",user_area";
        }
        // Enumerator for the energies.
        enum EnergyKeys { 
            kwEStrain=1
          , kwERRStrain
          , kwESlip
          , kwERRSlip
          , kwEDashpot
          , kwEAdhesive
        };
        // Contact model energy names in a comma separated list. The order corresponds with
        // the order of the EnergyKeys enumerator above. 
        virtual QString  getEnergies() const { 
            return " energy-strain"
                   ",energy-rrstrain"
                   ",energy-slip"
                   ",energy-rrslip"
                   ",energy-dashpot"
                   ",energy-adhesive";
        }
        // Returns the value of the energy (base 1 - getEnergy(1) returns the estrain energy).
        virtual double   getEnergy(uint i) const; 
        // Returns whether or not each energy is accumulated (base 1 - getEnergyAccumulate(1) 
        // returns whether or not the estrain energy is accumulated which is false).
        virtual bool     getEnergyAccumulate(uint i) const;
        // Set an energy value (base 1 - setEnergy(1) sets the estrain energy).
        virtual void     setEnergy(uint i,const double &d); // Base 1
        // Activate the energy. This is only called if the energy tracking is enabled. 
        virtual void     activateEnergy() { if (energies_) return; energies_ = NEWC(Energies());}
        // Returns whether or not the energy tracking has been enabled for this contact.
        virtual bool     getEnergyActivated() const {return (energies_ != 0);}
        // Enumerator for contact model related FISH callback events. 
        enum FishCallEvents {
            fActivated=0
            ,fSlipChange
        };
        // Contact model FISH callback event names in a comma separated list. The order corresponds with
        // the order of the FishCallEvents enumerator above. 
        virtual QString  getFishCallEvents() const { 
            return 
                "contact_activated"
                ",slip_change"; 
        }
        // Return the specified contact model property.
        virtual QVariant getProperty(uint i,const IContact *) const;
        // The return value denotes whether or not the property corresponds to the global
        // or local coordinate system (TRUE: global system, FALSE: local system). The
        // local system is the contact-plane system (nst) defined as follows.
        // If a vector V is expressed in the local system as (Vn, Vs, Vt), then V is
        // expressed in the global system as {Vn*nc + Vs*sc + Vt*tc} where where nc, sc
        // and tc are unit vectors in directions of the nst axes.
        // This is used when rendering contact model properties that are vectors.
        virtual bool     getPropertyGlobal(uint i) const;
        // Set the specified contact model property, ensuring that it is of the correct type
        // and within the correct range --- if not, then throw an exception.
        // The return value denotes whether or not the update has affected the timestep
        // computation (by having modified the translational or rotational tangent stiffnesses).
        // If true is returned, then the timestep will be recomputed.
        virtual bool     setProperty(uint i,const QVariant &v,IContact *);
        // The return value denotes whether or not the property is read-only
        // (TRUE: read-only, FALSE: read-write).
        virtual bool     getPropertyReadOnly(uint i) const;
        // The return value denotes whether or not the property is inheritable
        // (TRUE: inheritable, FALSE: not inheritable). Inheritance is provided by
        // the endPropertyUpdated method.
        virtual bool     supportsInheritance(uint i) const; 
        // Return whether or not inheritance is enabled for the specified property.
        virtual bool     getInheritance(uint i) const { assert(i<32); quint32 mask = to<quint32>(1 << i);  return (inheritanceField_ & mask) ? true : false; }
        // Set the inheritance flag for the specified property.
        virtual void     setInheritance(uint i,bool b) { assert(i<32); quint32 mask = to<quint32>(1 << i);  if (b) inheritanceField_ |= mask;  else inheritanceField_ &= ~mask; }
        // Enumerator for contact model methods.
        enum MethodKeys { kwDeformability=1, kwArea};
        // Contact model methoid names in a comma separated list. The order corresponds with
        // the order of the MethodKeys enumerator above.  
        virtual QString  getMethods() const { return "deformability,area";}
        // Return a comma seprated list of the contact model method arguments (base 1).
        virtual QString  getMethodArguments(uint i) const; 
        // Set contact model method arguments (base 1). 
        // The return value denotes whether or not the update has affected the timestep
        // computation (by having modified the translational or rotational tangent stiffnesses).
        // If true is returned, then the timestep will be recomputed.
        virtual bool     setMethod(uint i,const QVector<QVariant> &vl,IContact *con=0); 
        // Prepare for entry into ForceDispLaw. The validate function is called when:
        // (1) the contact is created, (2) a property of the contact that returns a true via
        // the setProperty method has been modified and (3) when a set of cycles is executed
        // via the {cycle N} command.
        // Return value indicates contact activity (TRUE: active, FALSE: inactive).
        virtual bool    validate(ContactModelMechanicalState *state,const double ×tep);
        // The endPropertyUpdated method is called whenever a surface property (with a name
        // that matches an inheritable contact model property name) of one of the contacting
        // pieces is modified. This allows the contact model to update its associated
        // properties. The return value denotes whether or not the update has affected
        // the time step computation (by having modified the translational or rotational
        // tangent stiffnesses). If true is returned, then the time step will be recomputed.  
        virtual bool    endPropertyUpdated(const QString &name,const IContactMechanical *c);
        // The forceDisplacementLaw function is called during each cycle. Given the relative
        // motion of the two contacting pieces (via
        //   state->relativeTranslationalIncrement_ (Ddn, Ddss, Ddst)
        //   state->relativeAngularIncrement_       (Dtt, Dtbs, Dtbt)
        //     Ddn  : relative normal-displacement increment, Ddn > 0 is opening
        //     Ddss : relative  shear-displacement increment (s-axis component)
        //     Ddst : relative  shear-displacement increment (t-axis component)
        //     Dtt  : relative twist-rotation increment
        //     Dtbs : relative  bend-rotation increment (s-axis component)
        //     Dtbt : relative  bend-rotation increment (t-axis component)
        //       The relative displacement and rotation increments:
        //         Dd = Ddn*nc + Ddss*sc + Ddst*tc
        //         Dt = Dtt*nc + Dtbs*sc + Dtbt*tc
        //       where nc, sc and tc are unit vectors in direc. of the nst axes, respectively.
        //       [see {Table 1: Contact State Variables} in PFC Model Components:
        //       Contacts and Contact Models: Contact Resolution]
        // ) and the contact properties, this function must update the contact force and
        // moment.
        //   The force_ is acting on piece 2, and is expressed in the local coordinate system
        //   (defined in getPropertyGlobal) such that the first component positive denotes
        //   compression. If we define the moment acting on piece 2 by Mc, and Mc is expressed
        //   in the local coordinate system (defined in getPropertyGlobal), then we must use the getMechanicalContact()->updateResultingTorquesLocal(...) method to 
        // get the total moment. 
        // The return value indicates the contact activity status (TRUE: active, FALSE:
        // inactive) during the next cycle.
        // Additional information:
        //   * If state->activated() is true, then the contact has just become active (it was
        //     inactive during the previous time step).
        //   * Fully elastic behavior is enforced during the SOLVE ELASTIC command by having
        //     the forceDispLaw handle the case of {state->canFail_ == true}.
        virtual bool    forceDisplacementLaw(ContactModelMechanicalState *state,const double ×tep);
        virtual bool    thermalCoupling(ContactModelMechanicalState*, ContactModelThermalState*, IContactThermal*, const double&);
        // The getEffectiveXStiffness functions return the translational and rotational
        // tangent stiffnesses used to compute a stable time step. When a contact is sliding,
        // the translational tangent shear stiffness is zero (but this stiffness reduction
        // is typically ignored when computing a stable time step). If the contact model
        // includes a dashpot, then the translational stiffnesses must be increased (see
        // Potyondy (2009)).
        //   [Potyondy, D. 'Stiffness Matrix at a Contact Between Two Clumps,' Itasca
        //   Consulting Group, Inc., Minneapolis, MN, Technical Memorandum ICG6863-L,
        //   December 7, 2009.]
        virtual DVect2  getEffectiveTranslationalStiffness() const { return effectiveTranslationalStiffness_; }
        virtual DAVect  getEffectiveRotationalStiffness() const { return effectiveRotationalStiffness_;}
        // Return a new instance of the contact model. This is used in the CMAT
        // when a new contact is created. 
        virtual ContactModelARRLinear *clone() const override { return NEWC(ContactModelARRLinear()); }
        // The getActivityDistance function is called by the contact-resolution logic when
        // the CMAT is modified. Return value is the activity distance used by the
        // checkActivity function.
        virtual double              getActivityDistance() const {return (rgap_ + a_d0_);}
        // The isOKToDelete function is called by the contact-resolution logic when...
        // Return value indicates whether or not the contact may be deleted.
        // If TRUE, then the contact may be deleted when it is inactive.
        // If FALSE, then the contact may not be deleted (under any condition).
        virtual bool                isOKToDelete() const { return !isBonded(); }
        // Zero the forces and moments stored in the contact model. This function is called
        // when the contact becomes inactive.
        virtual void                resetForcesAndMoments() { lin_F(DVect(0.0)); dp_F(DVect(0.0));
                                                              res_M(DAVect(0.0)); a_F(0.0);
                                                              if (energies_) { energies_->estrain_   = 0.0;
                                                                               energies_->errstrain_ = 0.0; }
                                                            }
        virtual void     setForce(const DVect &v,IContact *c);
        virtual void     setArea(const double &d) { userArea_ = d; }
        virtual double   getArea() const { return userArea_; }
        // The checkActivity function is called by the contact-resolution logic when...
        // Return value indicates contact activity (TRUE: active, FALSE: inactive).
        // A contact with the arrlinear model is active if the surface gap is less than
        // or equal to the attraction range (a_d0_).
        virtual bool     checkActivity(const double &gap) { return  gap <= (rgap_ + a_d0_); }
        // Returns the sliding state (FALSE is returned if not implemented).
        virtual bool     isSliding() const { return lin_S_; }
        // Returns the bonding state (FALSE is returned if not implemented).
        virtual bool     isBonded() const { return false; }
        // Both of these methods are called only for contacts with facets where the wall 
        // resolution scheme is set the full. In such cases one might wish to propagate 
        // contact state information (e.g., shear force) from one active contact to another. 
        // See the Faceted Wall section in the documentation. 
        virtual void     propagateStateInformation(IContactModelMechanical* oldCm,const CAxes &oldSystem=CAxes(),const CAxes &newSystem=CAxes());
        virtual void     setNonForcePropsFrom(IContactModel *oldCM);
        /// Return the total force that the contact model holds.
        virtual DVect    getForce(const IContactMechanical *) const;
        /// Return the total moment on 1 that the contact model holds
        virtual DAVect   getMomentOn1(const IContactMechanical *) const;
        /// Return the total moment on 1 that the contact model holds
        virtual DAVect   getMomentOn2(const IContactMechanical *) const;
   
        // Methods to get and set properties. 
        const double & kn() const {return kn_;}
        void           kn(const double &d) {kn_=d;}
        const double & ks() const {return ks_;}
        void           ks(const double &d) {ks_=d;}
        const double & fric() const {return fric_;}
        void           fric(const double &d) {fric_=d;}
        const DVect &  lin_F() const {return lin_F_;}
        void           lin_F(const DVect &f) { lin_F_=f;}
        bool           lin_S() const {return lin_S_;}
        void           lin_S(bool b) { lin_S_=b;}
        uint           lin_mode() const {return lin_mode_;}
        void           lin_mode(uint i) { lin_mode_= i;}
        const double & rgap() const {return rgap_;}
        void           rgap(const double &d) {rgap_=d;}
        bool     hasDamping() const {return dpProps_ ? true : false;}
        double   dp_nratio() const {return (hasDamping() ? (dpProps_->dp_nratio_) : 0.0);}
        void     dp_nratio(const double &d) { if(!hasDamping()) return; dpProps_->dp_nratio_=d;}
        double   dp_sratio() const {return hasDamping() ? dpProps_->dp_sratio_: 0.0;}
        void     dp_sratio(const double &d) { if(!hasDamping()) return; dpProps_->dp_sratio_=d;}
        int      dp_mode() const {return hasDamping() ? dpProps_->dp_mode_: -1;}
        void     dp_mode(int i) { if(!hasDamping()) return; dpProps_->dp_mode_=i;}
        DVect    dp_F() const {return hasDamping() ? dpProps_->dp_F_: DVect(0.0);}
        void     dp_F(const DVect &f) { if(!hasDamping()) return; dpProps_->dp_F_=f;}
        bool    hasEnergies() const {return energies_ ? true:false;}
        double  estrain() const {return hasEnergies() ? energies_->estrain_: 0.0;}
        void    estrain(const double &d) { if(!hasEnergies()) return; energies_->estrain_=d;}
        double  errstrain() const {return hasEnergies() ? energies_->errstrain_: 0.0;}
        void    errstrain(const double &d) { if(!hasEnergies()) return; energies_->errstrain_=d;}
        double  eslip() const {return hasEnergies() ? energies_->eslip_: 0.0;}
        void    eslip(const double &d) { if(!hasEnergies()) return; energies_->eslip_=d;}
        double  errslip() const {return hasEnergies() ? energies_->errslip_: 0.0;}
        void    errslip(const double &d) { if(!hasEnergies()) return; energies_->errslip_=d;}
        double  edashpot() const {return hasEnergies() ? energies_->edashpot_: 0.0;}
        void    edashpot(const double &d) { if(!hasEnergies()) return; energies_->edashpot_=d;}
        double  eadhesive() const {return hasEnergies() ? energies_->eadhesive_: 0.0;}
        void    eadhesive(const double &d) { if(!hasEnergies()) return; energies_->eadhesive_=d;}
        uint inheritanceField() const {return inheritanceField_;}
        void inheritanceField(uint i) {inheritanceField_ = i;}
        const DVect2 & effectiveTranslationalStiffness()  const          {return effectiveTranslationalStiffness_;}
        void           effectiveTranslationalStiffness(const DVect2 &v ) {effectiveTranslationalStiffness_=v;}
        const DAVect & effectiveRotationalStiffness()  const             {return effectiveRotationalStiffness_;}
        void           effectiveRotationalStiffness(const DAVect &v )    {effectiveRotationalStiffness_=v;}
        // Rolling resistance methods
        const double & res_fric() const {return res_fric_;}
        void           res_fric(const double &d) {res_fric_=d;}
        const DAVect & res_M() const               {return res_M_;}
        void           res_M(const DAVect &f)       { res_M_=f;}
        bool           res_S() const {return res_S_;}
        void           res_S(bool b) { res_S_=b;}
        const double & kr() const {return kr_;}
        void           kr(const double &d) {kr_=d;}
        const double & fr() const {return fr_;}
        void           fr(const double &d) {fr_=d;}
        // Adhesive methods
        const double & a_f0() const {return   a_f0_;}
        void           a_f0(const double &d) {a_f0_ = d;}
        const double & a_d0() const {return   a_d0_;}
        void           a_d0(const double &d) {a_d0_ = d;}
        const double & a_F() const {return    a_F_;}
        void           a_F(const double &d)  {a_F_  = d;}
    private:
        // Index - used internally by PFC. Should be set to -1 in the cpp file. 
        static int index_;
        // Structure to store the energies. 
        struct Energies {
            Energies() : estrain_(0.0), errstrain_(0.0), eslip_(0.0), errslip_(0.0), edashpot_(0.0), eadhesive_(0.0) {}
            double estrain_;   // elastic energy stored in linear group 
            double errstrain_; // elastic energy stored in rolling resistance group
            double eslip_;     // work dissipated by friction 
            double errslip_;   // work dissipated by rolling resistance friction 
            double edashpot_;  // work dissipated by dashpots
            double eadhesive_; // work done by attractive force on contacting pieces (positive or negative)
        };
        // Structure to store dashpot quantities. 
        struct dpProps {
            dpProps() : dp_nratio_(0.0), dp_sratio_(0.0), dp_mode_(0), dp_F_(DVect(0.0)) {}
            double dp_nratio_;     // normal viscous critical damping ratio
            double dp_sratio_;     // shear  viscous critical damping ratio
            int    dp_mode_;      // for viscous mode (0-4) 0 = dashpots, 1 = tensile limit, 2 = shear limit, 3 = limit both
            DVect  dp_F_;  // Force in the dashpots
        };
        bool   updateKn(const IContactMechanical *con);
        bool   updateKs(const IContactMechanical *con);
        bool   updateFric(const IContactMechanical *con);
        bool   updateResFric(const IContactMechanical *con);
        void   updateStiffness(ContactModelMechanicalState *state);
        void   setDampCoefficients(const double &mass,double *vcn,double *vcs);
        // Contact model inheritance fields.
        quint32 inheritanceField_;
        // Effective translational stiffness.
        DVect2  effectiveTranslationalStiffness_;
        DAVect  effectiveRotationalStiffness_;      // (Twisting,Bending,Bending) Rotational stiffness (twisting always 0)
        // linear model properties
        double      kn_;        // Normal stiffness
        double      ks_;        // Shear stiffness
        double      fric_;      // Coulomb friction coefficient
        DVect       lin_F_;     // Force carried in the linear model
        bool        lin_S_;     // The current slip state
        uint        lin_mode_;  // Specifies absolute (0) or incremental (1) calculation mode 
        double      rgap_;      // Reference gap 
        dpProps *   dpProps_;   // The viscous properties
        // rolling resistance properties
        double res_fric_;       // rolling friction coefficient
        DAVect res_M_;          // moment (bending only)         
        bool   res_S_;          // The current rolling resistance slip state
        double kr_;             // bending rotational stiffness (read-only, calculated internaly) 
        double fr_;             // rolling friction coefficient (rbar*res_fric_) (calculated internaly, not a property)
        // Adhesive properties
        double a_f0_;  // maximum attractive force [force], "a_f0"
        double a_d0_;  // attraction range [length]       , "a_d0"
        double a_F_;   // attractive force [force]        , "a_force"
        double      userArea_;   // Area as specified by the user 
        Energies *   energies_; // The energies
    };
} // namespace cmodelsxd
// EoF
 | 
contactmodelarrlinear.cpp
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156  | // contactmodelARRLinear.cpp
#include "contactmodelarrlinear.h"
#include "module/interface/icontactmechanical.h"
#include "module/interface/icontact.h"
#include "module/interface/ipiecemechanical.h"
#include "module/interface/ipiece.h"
#include "module/interface/ifishcalllist.h"
#include "utility/src/tptr.h"
#include "shared/src/mathutil.h"
#include "kernel/interface/iprogram.h"
#include "module/interface/icontactthermal.h"
#include "contactmodel/src/contactmodelthermal.h"
#include "../version.txt"
#include "fish/src/parameter.h"
#ifdef ARRLINEAR_LIB
#ifdef _WIN32
    int __stdcall DllMain(void *,unsigned, void *) {
        return 1;
    }
#endif
    extern "C" EXPORT_TAG const char *getName() {
#if DIM==3
        return "contactmodelmechanical3dARRLinear";
#else
        return "contactmodelmechanical2dARRLinear";
#endif
    }
    extern "C" EXPORT_TAG unsigned getMajorVersion() {
        return MAJOR_VERSION; 
    }
    extern "C" EXPORT_TAG unsigned getMinorVersion() {
        return MINOR_VERSION; ;
    }
    extern "C" EXPORT_TAG void *createInstance() {
        cmodelsxd::ContactModelARRLinear *m = new cmodelsxd::ContactModelARRLinear();
        return (void *)m;
    }
#endif 
namespace cmodelsxd {
    static const quint32 linKnMask      = 0x00000002; // Base 1!
    static const quint32 linKsMask      = 0x00000004;
    static const quint32 linFricMask    = 0x00000008;
    static const quint32 resFricMask    = 0x00004000;
    using namespace itasca;
    int ContactModelARRLinear::index_ = -1;
    UInt ContactModelARRLinear::getMinorVersion() const { return MINOR_VERSION; }
    ContactModelARRLinear::ContactModelARRLinear() : inheritanceField_(linKnMask|linKsMask|linFricMask|resFricMask) 
                                             , effectiveTranslationalStiffness_(DVect2(0.0)) 
                                             , effectiveRotationalStiffness_(DAVect(0.0))
                                             , kn_(0.0)
                                             , ks_(0.0)
                                             , fric_(0.0)
                                             , lin_F_(DVect(0.0))
                                             , lin_S_(false)
                                             , lin_mode_(0)
                                             , rgap_(0.0)
                                             , dpProps_(0)
                                             , res_fric_(0.0)   
                                             , res_M_(DAVect(0.0))
                                             , res_S_(false)
                                             , kr_(0.0)
                                             , fr_(0.0)
                                             , a_f0_(0.0)
                                             , a_d0_(0.0)
                                             , a_F_(0.0)
                                             , userArea_(0)
                                             , energies_(0) {
    }
    ContactModelARRLinear::~ContactModelARRLinear() {
        // Make sure to clean up after yourself!
        if (dpProps_)
            delete dpProps_;
        if (energies_)
            delete energies_;
    }
    void ContactModelARRLinear::archive(ArchiveStream &stream) {
        // The stream allows one to archive the values of the contact model
        // so that it can be saved and restored. The minor version can be
        // used here to allow for incremental changes to the contact model too. 
        stream & kn_;
        stream & ks_;
        stream & fric_;
        stream & lin_F_;
        stream & lin_S_;
        stream & lin_mode_;
        stream & rgap_;
        stream & res_fric_;   
        stream & res_M_;
        stream & res_S_;
        stream & kr_;
        stream & fr_;
        stream & a_f0_;
        stream & a_d0_;
        stream & a_F_;
 
        if (stream.getArchiveState()==ArchiveStream::Save) {
            bool b = false;
            if (dpProps_) {
                b = true;
                stream & b;
                stream & dpProps_->dp_nratio_; 
                stream & dpProps_->dp_sratio_; 
                stream & dpProps_->dp_mode_; 
                stream & dpProps_->dp_F_; 
            }
            else
                stream & b;
            b = false;
            if (energies_) {
                b = true;
                stream & b;
                stream & energies_->estrain_;
                stream & energies_->errstrain_;
                stream & energies_->eslip_;
                stream & energies_->errslip_;
                stream & energies_->edashpot_;
                stream & energies_->eadhesive_;
            }
            else
                stream & b;
        } else {
            bool b(false);
            stream & b;
            if (b) {
                if (!dpProps_)
                    dpProps_ = NEWC(dpProps());
                stream & dpProps_->dp_nratio_; 
                stream & dpProps_->dp_sratio_; 
                stream & dpProps_->dp_mode_; 
                stream & dpProps_->dp_F_; 
            }
            stream & b;
            if (b) {
                if (!energies_)
                    energies_ = NEWC(Energies());
                stream & energies_->estrain_;
                stream & energies_->errstrain_;
                stream & energies_->eslip_;
                stream & energies_->errslip_;
                stream & energies_->edashpot_;
                stream & energies_->eadhesive_;
            }
        }
        stream & inheritanceField_;
        stream & effectiveTranslationalStiffness_;
        stream & effectiveRotationalStiffness_; 
        if (stream.getArchiveState()==ArchiveStream::Save || stream.getRestoreVersion() > 1)
            stream & userArea_;
    }
    void ContactModelARRLinear::copy(const ContactModel *cm) {
        // Copy all of the contact model properties. Used in the CMAT 
        // when a new contact is created. 
        ContactModelMechanical::copy(cm);
        const ContactModelARRLinear *in = dynamic_cast<const ContactModelARRLinear*>(cm);
        if (!in) throw std::runtime_error("Internal error: contact model dynamic cast failed.");
        kn(in->kn());
        ks(in->ks());
        fric(in->fric());
        lin_F(in->lin_F());
        lin_S(in->lin_S());
        lin_mode(in->lin_mode());
        rgap(in->rgap());
        res_fric(in->res_fric());   
        res_M(in->res_M());      
        res_S(in->res_S());
        kr(in->kr());
        fr(in->fr());
        a_f0(in->a_f0());
        a_d0(in->a_d0());
        a_F(in->a_F());
        if (in->hasDamping()) {
            if (!dpProps_)
                dpProps_ = NEWC(dpProps());
            dp_nratio(in->dp_nratio()); 
            dp_sratio(in->dp_sratio()); 
            dp_mode(in->dp_mode()); 
            dp_F(in->dp_F()); 
        }
        if (in->hasEnergies()) {
            if (!energies_)
                energies_ = NEWC(Energies());
            estrain(in->estrain());
            errstrain(in->errstrain());
            eslip(in->eslip());
            errslip(in->errslip());
            edashpot(in->edashpot());
            eadhesive(in->eadhesive());
        }
        userArea_ = in->userArea_;
        inheritanceField(in->inheritanceField());
        effectiveTranslationalStiffness(in->effectiveTranslationalStiffness());
        effectiveRotationalStiffness(in->effectiveRotationalStiffness());
    }
    QVariant ContactModelARRLinear::getProperty(uint i,const IContact *con) const {
        // Return the property. The IContact pointer is provided so that 
        // more complicated properties, depending on contact characteristics,
        // can be calcualted. 
        QVariant var;
        switch (i) {
        case kwKn:        return kn_;
        case kwKs:        return ks_;
        case kwFric:      return fric_;
        case kwLinF:      var.setValue(lin_F_); return var;
        case kwLinS:      return lin_S_;
        case kwLinMode:   return lin_mode_;
        case kwRGap:      return rgap_;
        case kwEmod: {
                        const IContactMechanical *c(convert_getcast<IContactMechanical>(con));
                        if (c ==nullptr) return 0.0;
                        double rsq(std::max(c->getEnd1Curvature().y(),c->getEnd2Curvature().y()));
                        double rsum(0.0);
                        if (c->getEnd1Curvature().y())
                            rsum += 1.0/c->getEnd1Curvature().y();
                        if (c->getEnd2Curvature().y())
                            rsum += 1.0/c->getEnd2Curvature().y();
                        if (userArea_) {
#ifdef THREED
                            rsq = std::sqrt(userArea_ / dPi);
#else
                            rsq = userArea_ / 2.0;
#endif        
                            rsum = rsq + rsq;
                            rsq = 1. / rsq;
                        }
#ifdef TWOD               
                        return (kn_ * rsum * rsq / 2.0);
#else                     
                        return (kn_ * rsum * rsq * rsq) / dPi;
#endif                    
                      }
        case kwKRatio:    return (ks_ == 0.0) ? 0.0 : (kn_/ks_);
        case kwDpNRatio:  return dpProps_ ? dpProps_->dp_nratio_ : 0;
        case kwDpSRatio:  return dpProps_ ? dpProps_->dp_sratio_ : 0;
        case kwDpMode:    return dpProps_ ? dpProps_->dp_mode_ : 0;
        case kwDpF: {
                dpProps_ ? var.setValue(dpProps_->dp_F_) : var.setValue(DVect(0.0));
                return var;
            }
        case kwResFric:     return res_fric_;
        case kwResMoment:   var.setValue(res_M_); return var;
        case kwResS:        return res_S_;
        case kwResKr:       return kr_;
        case kwAdhesiveF0:  return a_f0_;
        case kwAdhesiveD0:  return a_d0_;
        case kwAdhesiveF:   return a_F_;
        case kwUserArea :   return userArea_;
        }
        assert(0);
        return QVariant();
    }
    bool ContactModelARRLinear::getPropertyGlobal(uint i) const {
        // Returns whether or not a property is held in the global axis system (TRUE)
        // or the local system (FALSE). Used by the plotting logic.
        switch (i) {
        case kwLinF:   
        case kwDpF:  
        case kwResMoment:   
            return false;
        }
        return true;
    }
    bool ContactModelARRLinear::setProperty(uint i,const QVariant &v,IContact *) {
        // Set a contact model property. Return value indicates that the timestep
        // should be recalculated. 
        dpProps dp;
        switch (i) {
        case kwKn: {
                if (!v.canConvert<double>())
                    throw Exception("kn must be a double.");
                double val(v.toDouble());
                if (val<0.0)
                    throw Exception("Negative kn not allowed.");
                kn_ = val;
                return true;
            }
        case kwKs: {
                if (!v.canConvert<double>())
                    throw Exception("ks must be a double.");
                double val(v.toDouble());
                if (val<0.0)
                    throw Exception("Negative ks not allowed.");
                ks_ = val;  
                return true;
            }
        case kwFric: {
                if (!v.canConvert<double>())
                    throw Exception("fric must be a double.");
                double val(v.toDouble());
                if (val<0.0)
                    throw Exception("Negative fric not allowed.");
                fric_ = val;  
                return false;
            }
        case kwLinF: {
                if (!v.canConvert<DVect>())
                    throw Exception("lin_force must be a vector.");
                DVect val(v.value<DVect>());
                lin_F_ = val;
                return false;
            }
        case kwLinMode: {
                if (!v.canConvert<uint>())
                    throw Exception("lin_mode must be 0 (absolute) or 1 (incremental).");
                uint val(v.toUInt());
                if (val >1)
                    throw Exception("lin_mode must be 0 (absolute) or 1 (incremental).");
                lin_mode_ = val;
                return false;
            }
        case kwRGap: {
                if (!v.canConvert<double>())
                    throw Exception("Reference gap must be a double.");
                double val(v.toDouble());
                rgap_ = val;  
                return false;
            }
        case kwDpNRatio: {
                if (!v.canConvert<double>())
                    throw Exception("dp_nratio must be a double.");
                double val(v.toDouble());
                if (val<0.0)
                    throw Exception("Negative dp_nratio not allowed.");
                if (val == 0.0 && !dpProps_)
                    return false;
                if (!dpProps_)
                    dpProps_ = NEWC(dpProps());
                dpProps_->dp_nratio_ = val; 
                return true;
            }
        case kwDpSRatio: {
                if (!v.canConvert<double>())
                    throw Exception("dp_sratio must be a double.");
                double val(v.toDouble());
                if (val<0.0)
                    throw Exception("Negative dp_sratio not allowed.");
                if (val == 0.0 && !dpProps_)
                    return false;
                if (!dpProps_)
                    dpProps_ = NEWC(dpProps());
                dpProps_->dp_sratio_ = val;
                return true;
            }
        case kwDpMode: {
                if (!v.canConvert<int>())
                    throw Exception("The viscous mode dp_mode must be 0, 1, 2, or 3.");
                int val(v.toInt());
                if (val == 0 && !dpProps_)
                    return false;
                if (val < 0 || val > 3)
                    throw Exception("The viscous mode dp_mode must be 0, 1, 2, or 3.");
                if (!dpProps_)
                    dpProps_ = NEWC(dpProps());
                dpProps_->dp_mode_ = val;
                return false;
            }
        case kwDpF: {
                if (!v.canConvert<DVect>())
                    throw Exception("dp_force must be a vector.");
                DVect val(v.value<DVect>());
                if (val.fsum() == 0.0 && !dpProps_)
                    return false;
                if (!dpProps_)
                    dpProps_ = NEWC(dpProps());
                dpProps_->dp_F_ = val;
                return false;
            }
        case kwResFric: {
                if (!v.canConvert<double>())
                    throw Exception("res_fric must be a double.");
                double val(v.toDouble());
                if (val<0.0)
                    throw Exception("Negative res_fric not allowed.");
                res_fric_ = val;  
                return false;
            }
        case kwResMoment: {
                DAVect val(0.0);
#ifdef TWOD               
                if (!v.canConvert<DAVect>() && !v.canConvert<double>())
                    throw Exception("res_moment must be an angular vector.");
                if (v.canConvert<DAVect>())
                    val = DAVect(v.value<DAVect>());
                else
                    val = DAVect(v.toDouble());
#else
                if (!v.canConvert<DAVect>() && !v.canConvert<DVect>())
                    throw Exception("res_moment must be an angular vector.");
                if (v.canConvert<DAVect>())
                    val = DAVect(v.value<DAVect>());
                else
                    val = DAVect(v.value<DVect>());
#endif
                res_M_ = val;
                return false;
            }      
        case kwAdhesiveF0: {
                if (!v.canConvert<double>())
                    throw Exception("a_f0 must be a double.");
                double val(v.toDouble());
                if (val<0.0)
                    throw Exception("Negative a_f0 not allowed.");
                a_f0_ = val;
                return true;
            }
        case kwAdhesiveD0: {
                if (!v.canConvert<double>())
                    throw Exception("a_d0 must be a double.");
                double val(v.toDouble());
                if (val<0.0)
                    throw Exception("Negative a_d0 not allowed.");
                a_d0_ = val;
                return true;
            }
        case kwUserArea: {
                if (!v.canConvert<double>())
                    throw Exception("user_area must be a double.");
                double val(v.toDouble());
                if (val < 0.0)
                    throw Exception("Negative user_area not allowed.");
                userArea_ = val;
                return true;
            }
        }
        return false;
    }
    bool ContactModelARRLinear::getPropertyReadOnly(uint i) const {
        // Returns TRUE if a property is read only or FALSE otherwise. 
        switch (i) {
        case kwDpF:
        case kwLinS:
        case kwEmod:
        case kwKRatio:
        case kwResS:
        case kwResKr:
        case kwAdhesiveF:
            return true;
        default:
            break;
        }
        return false;
    }
    bool ContactModelARRLinear::supportsInheritance(uint i) const {
        // Returns TRUE if a property supports inheritance or FALSE otherwise. 
        switch (i) {
        case kwKn:
        case kwKs:
        case kwFric:
        case kwResFric:
            return true;
        default:
            break;
        }
        return false;
    }
    QString  ContactModelARRLinear::getMethodArguments(uint i) const {
        // Return a list of contact model method argument names. 
        switch (i) {
        case kwDeformability:
            return "emod,kratio";
        case kwArea:
            return QString();
        }
        assert(0);
        return QString();
    }
    bool ContactModelARRLinear::setMethod(uint i,const QVector<QVariant> &vl,IContact *con) {
        // Apply the specified method. 
        IContactMechanical *c(convert_getcast<IContactMechanical>(con));
        switch (i) {
        case kwDeformability: {
                double emod;
                double krat;
                if (vl.at(0).isNull()) 
                    throw Exception("Argument emod must be specified with method deformability in contact model %1.",getName());
                emod = vl.at(0).toDouble();
                if (emod<0.0)
                    throw Exception("Negative emod not allowed in contact model %1.",getName());
                if (vl.at(1).isNull()) 
                    throw Exception("Argument kratio must be specified with method deformability in contact model %1.",getName());
                krat = vl.at(1).toDouble();
                if (krat<0.0)
                    throw Exception("Negative stiffness ratio not allowed in contact model %1.",getName());
                double rsq(std::max(c->getEnd1Curvature().y(),c->getEnd2Curvature().y()));
                double rsum(0.0);
                if (c->getEnd1Curvature().y())
                    rsum += 1.0/c->getEnd1Curvature().y();
                if (c->getEnd2Curvature().y())
                    rsum += 1.0/c->getEnd2Curvature().y();
                if (userArea_) {
#ifdef THREED
                    rsq = std::sqrt(userArea_ / dPi);
#else
                    rsq = userArea_ / 2.0;
#endif        
                    rsum = rsq + rsq;
                    rsq = 1. / rsq;
                }
#ifdef TWOD
                kn_ = 2.0 * emod / (rsq * rsum);
#else
                kn_ = dPi * emod / (rsq * rsq * rsum);
#endif
                ks_ = (krat == 0.0) ? 0.0 : kn_ / krat;
                setInheritance(1,false);
                setInheritance(2,false);
                return true;
            }
        case kwArea: {
                if (!userArea_) {
                    double rsq(1./std::max(c->getEnd1Curvature().y(),c->getEnd2Curvature().y()));
#ifdef THREED
                    userArea_ = rsq * rsq * dPi;
#else
                    userArea_ = rsq * 2.0;
#endif                            
                }
                return true;
            }
        }
        return false;
    }
    double ContactModelARRLinear::getEnergy(uint i) const {
        // Return an energy value. 
        double ret(0.0);
        if (!energies_)
            return ret;
        switch (i) {
        case kwEStrain:    return energies_->estrain_;
        case kwERRStrain:  return energies_->errstrain_;
        case kwESlip:      return energies_->eslip_;
        case kwERRSlip:    return energies_->errslip_;
        case kwEDashpot:   return energies_->edashpot_;
        case kwEAdhesive:  return energies_->eadhesive_;
        }
        assert(0);
        return ret;
    }
    bool ContactModelARRLinear::getEnergyAccumulate(uint i) const {
        // Returns TRUE if the corresponding energy is accumulated or FALSE otherwise.
        switch (i) {
        case kwEStrain:   return false;
        case kwERRStrain: return false;
        case kwESlip:     return true;
        case kwERRSlip:   return true;
        case kwEDashpot:  return true;
        case kwEAdhesive: return true;
        }
        assert(0);
        return false;
    }
    void ContactModelARRLinear::setEnergy(uint i,const double &d) {
        // Set an energy value. 
        if (!energies_) return;
        switch (i) {
        case kwEStrain:    energies_->estrain_ = d;   return;  
        case kwERRStrain:  energies_->errstrain_ = d; return;  
        case kwESlip:      energies_->eslip_   = d;   return;
        case kwERRSlip:    energies_->errslip_   = d; return;
        case kwEDashpot:   energies_->edashpot_= d;   return;
        case kwEAdhesive:  energies_->eadhesive_= d;  return;
        }
        assert(0);
        return;
    }
    bool ContactModelARRLinear::validate(ContactModelMechanicalState *state,const double &) {
        // Validate the / Prepare for entry into ForceDispLaw. The validate function is called when:
        // (1) the contact is created, (2) a property of the contact that returns a true via
        // the setProperty method has been modified and (3) when a set of cycles is executed
        // via the {cycle N} command.
        // Return value indicates contact activity (TRUE: active, FALSE: inactive).
        assert(state);
        const IContactMechanical *c = state->getMechanicalContact(); 
        assert(c);
        if (state->trackEnergy_)
            activateEnergy();
        if (inheritanceField_ & linKnMask)
            updateKn(c);
        if (inheritanceField_ & linKsMask)
            updateKs(c);
        if (inheritanceField_ & linFricMask)
            updateFric(c);
        if (inheritanceField_ & resFricMask)
            updateResFric(c);
        updateStiffness(state);
        return checkActivity(state->gap_);
    }
    static const QString knstr("kn");
    bool ContactModelARRLinear::updateKn(const IContactMechanical *con) {
        assert(con);
        QVariant v1 = con->getEnd1()->getProperty(knstr);
        QVariant v2 = con->getEnd2()->getProperty(knstr);
        if (!v1.isValid() || !v2.isValid())
            return false;
        double kn1 = v1.toDouble();
        double kn2 = v2.toDouble();
        double val = kn_;
        if (kn1 && kn2)
            kn_ = kn1*kn2/(kn1+kn2);
        else if (kn1)
            kn_ = kn1;
        else if (kn2)
            kn_ = kn2;
        return ( (kn_ != val) );
    }
    static const QString ksstr("ks");
    bool ContactModelARRLinear::updateKs(const IContactMechanical *con) {
        assert(con);
        QVariant v1 = con->getEnd1()->getProperty(ksstr);
        QVariant v2 = con->getEnd2()->getProperty(ksstr);
        if (!v1.isValid() || !v2.isValid())
            return false;
        double ks1 = v1.toDouble();
        double ks2 = v2.toDouble();
        double val = ks_;
        if (ks1 && ks2)
            ks_ = ks1*ks2/(ks1+ks2);
        else if (ks1)
            ks_ = ks1;
        else if (ks2)
            ks_ = ks2;
        return ( (ks_ != val) );
    }
    static const QString fricstr("fric");
    bool ContactModelARRLinear::updateFric(const IContactMechanical *con) {
        assert(con);
        QVariant v1 = con->getEnd1()->getProperty(fricstr);
        QVariant v2 = con->getEnd2()->getProperty(fricstr);
        if (!v1.isValid() || !v2.isValid())
            return false;
        double fric1 = std::max(0.0,v1.toDouble());
        double fric2 = std::max(0.0,v2.toDouble());
        double val = fric_;
        fric_ = std::min(fric1,fric2);
        return ( (fric_ != val) );
    }
    static const QString rfricstr("rr_fric");
    bool ContactModelARRLinear::updateResFric(const IContactMechanical *con) {
        assert(con);
        QVariant v1 = con->getEnd1()->getProperty(rfricstr);
        QVariant v2 = con->getEnd2()->getProperty(rfricstr);
        if (!v1.isValid() || !v2.isValid())
            return false;
        double rfric1 = std::max(0.0,v1.toDouble());
        double rfric2 = std::max(0.0,v2.toDouble());
        double val = res_fric_;
        res_fric_ = std::min(rfric1,rfric2);
        return ( (res_fric_ != val) );
    }
    bool ContactModelARRLinear::endPropertyUpdated(const QString &name,const IContactMechanical *c) {
        // The endPropertyUpdated method is called whenever a surface property (with a name
        // that matches an inheritable contact model property name) of one of the contacting
        // pieces is modified. This allows the contact model to update its associated
        // properties. The return value denotes whether or not the update has affected
        // the time step computation (by having modified the translational or rotational
        // tangent stiffnesses). If true is returned, then the time step will be recomputed.  
        assert(c);
        QStringList availableProperties = getProperties().simplified().replace(" ","").split(",",QString::SkipEmptyParts);
        QRegExp rx(name,Qt::CaseInsensitive);
        int idx = availableProperties.indexOf(rx)+1;
        bool ret=false;
        if (idx<=0)
            return ret;
         
        switch(idx) {
        case kwKn:  { //kn
                if (inheritanceField_ & linKnMask)
                    ret = updateKn(c);
                break;
            }
        case kwKs:  { //ks
                if (inheritanceField_ & linKsMask)
                    ret =updateKs(c);
                break;
            }
        case kwFric:  { //fric
                if (inheritanceField_ & linFricMask)
                    updateFric(c);
                break;
            }
        case kwResFric:  { //rr_fric
                if (inheritanceField_ & resFricMask)
                   ret = updateResFric(c);
                break;
            }
        }
        return ret;
    }
    void ContactModelARRLinear::updateStiffness(ContactModelMechanicalState *state) {
        // first compute rolling resistance stiffness
        kr_ = 0.0;
        if (res_fric_ > 0.0) {
            double rbar = 0.0;
            double r1 = 1.0/state->end1Curvature_.y();
            rbar = r1; 
            double r2 = 0.0;
            if (state->end2Curvature_.y()) { 
                r2 = 1.0 / state->end2Curvature_.y();
                rbar = (r1*r2) / (r1+r2);
            }
            if (userArea_) {
#ifdef THREED
                r1 = std::sqrt(userArea_ / dPi);
#else
                r1 = userArea_ / 2.0;
#endif        
                r2 = r1;
                rbar = (r1*r2) / (r1+r2);
            }
            kr_ = ks_*rbar*rbar;
            fr_ = res_fric_*rbar;
        }
        // Now calculate effective stiffness
        DVect2 retT(kn_,ks_);
        // correction if viscous damping active
        if (dpProps_) {
            DVect2 correct(1.0);
            if (dpProps_->dp_nratio_)
                correct.rx() = sqrt(1.0+dpProps_->dp_nratio_*dpProps_->dp_nratio_) - dpProps_->dp_nratio_;
            if (dpProps_->dp_sratio_)
                correct.ry() = sqrt(1.0+dpProps_->dp_sratio_*dpProps_->dp_sratio_) - dpProps_->dp_sratio_;
            retT /= (correct*correct);
        }
        // Correction for adhesive group
        if (a_d0_ != 0.0) { retT.rdof(0) += a_f0_ / a_d0_; }
        effectiveTranslationalStiffness_ = retT;
        // Effective rotational stiffness (bending only)
        effectiveRotationalStiffness_ = DAVect(kr_);
#if DIM==3 
        effectiveRotationalStiffness_.rx() = 0.0;
#endif
    }
     
    bool ContactModelARRLinear::forceDisplacementLaw(ContactModelMechanicalState *state,const double ×tep) {
        assert(state);
        // Current overlap
        double overlap = rgap_ - state->gap_;
        // Relative translational increment
        DVect trans = state->relativeTranslationalIncrement_;
        // Correction factor to account for when the contact becomes newly active.
        // We estimate the time of activity during the timestep when the contact has first 
        // become active and scale the forces accordingly.
        double correction = 1.0;
        // The contact was just activated from an inactive state
        if (state->activated()) {
            // Trigger the FISH callback if one is hooked up to the 
            // contact_activated event.
            if (cmEvents_[fActivated] >= 0) {
                auto c = state->getContact();
                std::vector<fish::Parameter> arg = { fish::Parameter(c->getIThing()) };
                IFishCallList *fi = const_cast<IFishCallList*>(state->getProgram()->findInterface<IFishCallList>());
                fi->setCMFishCallArguments(c,arg,cmEvents_[fActivated]);
            }
            // Calculate the correction factor.
            if (trans.x()) {
                correction = -1.0*overlap / trans.x();
                if (correction < 0)
                    correction = 1.0;
            }
        }
        // Angular dispacement increment.
        DAVect ang  = state->relativeAngularIncrement_;
        DVect lin_F_old = lin_F_;
        if (lin_mode_ == 0) 
            lin_F_.rx() = overlap * kn_; // absolute mode for normal force calculation
        else
          lin_F_.rx() -= correction * trans.x() * kn_; // incremental mode for normal force calculation
        // Normal force can only be positive.
        lin_F_.rx() = std::max(0.0,lin_F_.x());
        // Calculate the shear force.
        DVect sforce(0.0);
        // dim holds the dimension (e.g., 2 for 2D and 3 for 3D)
        // Loop over the shear components (note: the 0 component is the normal component)
        // and calculate the shear force.
        for (int i=1; i<dim; ++i)
            sforce.rdof(i) = lin_F_.dof(i) - trans.dof(i) * ks_ * correction;
        // The canFail flag corresponds to whether or not the contact can undergo non-linear
        // force-displacement response. If the SOLVE ELASTIC command is given then the 
        // canFail state is set to FALSE. Otherwise it is always TRUE. 
        if (state->canFail_) {
            // Resolve sliding. This is the normal force multiplied by the coefficient of friction.
            double crit = lin_F_.x() * fric_;
            // The is the magnitude of the shear force.
            double sfmag = sforce.mag();
            // Sliding occurs when the magnitude of the shear force is greater than the 
            // critical value.
            if (sfmag > crit) {
                // Lower the shear force to the critical value for sliding.
                double rat = crit / sfmag;
                sforce *= rat;
                // Handle the slip_change event if one has been hooked up. Sliding has commenced.  
                if (!lin_S_ && cmEvents_[fSlipChange] >= 0) {
                    auto c = state->getContact();
                    std::vector<fish::Parameter> arg = { fish::Parameter(c->getIThing()), 
                                                         fish::Parameter() };
                    IFishCallList *fi = const_cast<IFishCallList*>(state->getProgram()->findInterface<IFishCallList>());
                    fi->setCMFishCallArguments(c,arg,cmEvents_[fSlipChange]);
                }
                lin_S_ = true;
            } else {
                // Handle the slip_change event if one has been hooked up and
                // the contact was previously sliding. Sliding has ceased.  
                if (lin_S_) {
                    if (cmEvents_[fSlipChange] >= 0) {
                    auto c = state->getContact();
                    std::vector<fish::Parameter> arg = { fish::Parameter(c->getIThing()), 
                                                         fish::Parameter((qint64)1) };
                    IFishCallList *fi = const_cast<IFishCallList*>(state->getProgram()->findInterface<IFishCallList>());
                    fi->setCMFishCallArguments(c,arg,cmEvents_[fSlipChange]);
                    }
                    lin_S_ = false;
                }
            }
        }
        
        // Set the shear components of the total force.
        for (int i=1; i<dim; ++i)
            lin_F_.rdof(i) = sforce.dof(i);
        // Rolling resistance
        DAVect res_M_old = res_M_;
        if ((fr_ == 0.0) || (kr_==0.0)) {
            res_M_.fill(0.0);
        } else {
            DAVect angStiff(0.0); 
            DAVect MomentInc(0.0);
#if DIM==3 
            angStiff.rx() = 0.0;
            angStiff.ry() = kr_;
#endif
            angStiff.rz() = kr_;
            MomentInc = ang * angStiff * (-1.0); 
            res_M_ += MomentInc;
            if (state->canFail_) {
                // Account for bending strength
                double rmax = std::abs(fr_*lin_F_.x());
                double rmag = res_M_.mag();
                if (rmag >  rmax) {
                    double fac = rmax/rmag;
                    res_M_ *= fac;
                    res_S_ = true;
                } else {
                    res_S_ = false;
                }
            }
        }
        // Account for dashpot forces if the dashpot structure has been defined. 
        if (dpProps_) {
            dpProps_->dp_F_.fill(0.0);
            double vcn(0.0), vcs(0.0);
            // Calculate the damping coefficients. 
            setDampCoefficients(state->inertialMass_,&vcn,&vcs);
            // First damp the shear components
            for (int i=1; i<dim; ++i)
                dpProps_->dp_F_.rdof(i) = trans.dof(i) * (-1.0* vcs) / timestep; 
            // Damp the normal component
            dpProps_->dp_F_.rx() -= trans.x() * vcn / timestep;       
            // Need to change behavior based on the dp_mode.
            if ((dpProps_->dp_mode_ == 1 || dpProps_->dp_mode_ == 3))  { 
                // Limit in tension if not bonded.
                if (dpProps_->dp_F_.x() + lin_F_.x() < 0)
                    dpProps_->dp_F_.rx() = - lin_F_.rx();
            }
            if (lin_S_ && dpProps_->dp_mode_ > 1)  { 
                // Limit in shear if not sliding.
                double dfn = dpProps_->dp_F_.rx();
                dpProps_->dp_F_.fill(0.0); 
                dpProps_->dp_F_.rx() = dfn; 
            }
        }
        // Adhesive force
        double a_F_old = a_F_;
        double gs = state->gap_ - rgap_;
        a_F_ = 0.0;
        if ( gs <= 0.0 )
          a_F_ = a_f0_;
        else if ( gs <  a_d0_ )  // if a_d0_ == 0.0, will not enter, so next line divide by a_d0_ is ok
          a_F_ = a_f0_ * ( 1.0 - (gs/a_d0_) );
        //Compute energies if energy tracking has been enabled. 
        if (state->trackEnergy_) {
            assert(energies_);
            energies_->estrain_ =  0.0;
            if (kn_)
                // Calculate the strain energy. 
                energies_->estrain_ = 0.5*lin_F_.x()*lin_F_.x()/kn_;
            if (ks_) {
                DVect s = lin_F_;
                s.rx() = 0.0;
                double smag2 = s.mag2();
                // Add the shear component of the strain energy.
                energies_->estrain_ += 0.5*smag2 / ks_;
                if (lin_S_) {
                    // If sliding calculate the slip energy and accumulate it.
                    lin_F_old.rx() = 0.0;
                    DVect avg_F_s = (s + lin_F_old)*0.5;
                    DVect u_s_el =  (s - lin_F_old) / ks_;
                    DVect u_s(0.0);
                    for (int i=1; i<dim; ++i)
                        u_s.rdof(i) = trans.dof(i);
                    energies_->eslip_ -= std::min(0.0,(avg_F_s | (u_s + u_s_el)));
                }
            }
            // Add the rolling resistance energy contributions.
            energies_->errstrain_ = 0.0;
            if (kr_) {
                energies_->errstrain_ = 0.5*res_M_.mag2() / kr_;
                if (res_S_) {
                    // If sliding calculate the slip energy and accumulate it.
                    DAVect avg_M = (res_M_ + res_M_old)*0.5;
                    DAVect t_s_el =  (res_M_ - res_M_old) / kr_;
                    energies_->errslip_ -= std::min(0.0,(avg_M | (ang + t_s_el)));
                }
            }
            // Add the adhesive energy contribution:
            energies_->eadhesive_ -= 0.5*(a_F_old + a_F_) * trans.x();
            if (dpProps_) {
                // Calculate damping energy (accumulated) if the dashpots are active. 
                energies_->edashpot_ -= dpProps_->dp_F_ | trans;
            }
        }
        // This is just a sanity check to ensure, in debug mode, that the force isn't wonky. 
        assert(lin_F_ == lin_F_);
        return true;
    }
    
    bool ContactModelARRLinear::thermalCoupling(ContactModelMechanicalState*, ContactModelThermalState* ts, IContactThermal*, const double&) {
        // Account for thermal expansion in incremental mode
        if (lin_mode_ == 0 || ts->gapInc_ == 0.0) return false;
        DVect finc(0.0);
        finc.rx() = kn_ * ts->gapInc_;
        lin_F_ -= finc;
        return true;
    }
    void ContactModelARRLinear::setForce(const DVect &v,IContact *c) { 
        lin_F(v); 
        if (v.x() > 0) 
            rgap_ = c->getGap() + v.x() / kn_; 
    } 
    void ContactModelARRLinear::propagateStateInformation(IContactModelMechanical* old,const CAxes &oldSystem,const CAxes &newSystem) {
        // Only called for contacts with wall facets when the wall resolution scheme
        // is set to full!
        // Only do something if the contact model is of the same type
        if (old->getContactModel()->getName().compare("arrlinear",Qt::CaseInsensitive) == 0 && !isBonded()) {
            ContactModelARRLinear *oldCm = (ContactModelARRLinear *)old;
#ifdef THREED
            // Need to rotate just the shear component from oldSystem to newSystem
            // Step 1 - rotate oldSystem so that the normal is the same as the normal of newSystem
            DVect axis = oldSystem.e1() & newSystem.e1();
            double c, ang, s;
            DVect re2;
            if (!checktol(axis.abs().maxComp(),0.0,1.0,1000)) {
                axis = axis.unit();
                c = oldSystem.e1()|newSystem.e1();
                if (c > 0)
                    c = std::min(c,1.0);
                else
                    c = std::max(c,-1.0);
                ang = acos(c);
                s = sin(ang);
                double t = 1. - c;
                DMatrix<3,3> rm;
                rm.get(0,0) = t*axis.x()*axis.x() + c;
                rm.get(0,1) = t*axis.x()*axis.y() - axis.z()*s;
                rm.get(0,2) = t*axis.x()*axis.z() + axis.y()*s;
                rm.get(1,0) = t*axis.x()*axis.y() + axis.z()*s;
                rm.get(1,1) = t*axis.y()*axis.y() + c;
                rm.get(1,2) = t*axis.y()*axis.z() - axis.x()*s;
                rm.get(2,0) = t*axis.x()*axis.z() - axis.y()*s;
                rm.get(2,1) = t*axis.y()*axis.z() + axis.x()*s;
                rm.get(2,2) = t*axis.z()*axis.z() + c;
                re2 = rm*oldSystem.e2();
            }
            else
                re2 = oldSystem.e2();
            // Step 2 - get the angle between the oldSystem rotated shear and newSystem shear
            axis = re2 & newSystem.e2();
            DVect2 tpf;
            DVect2 tpm;
            DMatrix<2,2> m;
            if (!checktol(axis.abs().maxComp(),0.0,1.0,1000)) {
                axis = axis.unit();
                c = re2|newSystem.e2();
                if (c > 0)
                    c = std::min(c,1.0);
                else
                    c = std::max(c,-1.0);
                ang = acos(c);
                if (!checktol(axis.x(),newSystem.e1().x(),1.0,100))
                    ang *= -1;
                s = sin(ang);
                m.get(0,0) = c;
                m.get(1,0) = s;
                m.get(0,1) = -m.get(1,0);
                m.get(1,1) = m.get(0,0);
                tpf = m*DVect2(oldCm->lin_F_.y(),oldCm->lin_F_.z());
                tpm = m*DVect2(oldCm->res_M_.y(),oldCm->res_M_.z());
            } else {
                m.get(0,0) = 1.;
                m.get(0,1) = 0.;
                m.get(1,0) = 0.;
                m.get(1,1) = 1.;
                tpf = DVect2(oldCm->lin_F_.y(),oldCm->lin_F_.z());
                tpm = DVect2(oldCm->res_M_.y(),oldCm->res_M_.z());
            }
            DVect pforce = DVect(0,tpf.x(),tpf.y());
            DVect pm     = DVect(0,tpm.x(),tpm.y());
#else
            oldSystem;
            newSystem;
            DVect pforce = DVect(0,oldCm->lin_F_.y());
            DVect pm     = DVect(0,oldCm->res_M_.y());
#endif
            for (int i=1; i<dim; ++i)
                lin_F_.rdof(i) += pforce.dof(i);
            if (lin_mode_ && oldCm->lin_mode_)
                lin_F_.rx() = oldCm->lin_F_.x();
            oldCm->lin_F_ = DVect(0.0);
            oldCm->res_M_ = DAVect(0.0);
            if (dpProps_ && oldCm->dpProps_) {
#ifdef THREED
                tpf = m*DVect2(oldCm->dpProps_->dp_F_.y(),oldCm->dpProps_->dp_F_.z());
                pforce = DVect(oldCm->dpProps_->dp_F_.x(),tpf.x(),tpf.y());
#else
                pforce = oldCm->dpProps_->dp_F_;
#endif
                dpProps_->dp_F_ += pforce;
                oldCm->dpProps_->dp_F_ = DVect(0.0);
            }
            if(oldCm->getEnergyActivated()) {
                activateEnergy();
                energies_->estrain_ = oldCm->energies_->estrain_;
                energies_->edashpot_ = oldCm->energies_->edashpot_;
                energies_->eslip_ = oldCm->energies_->eslip_;
                oldCm->energies_->estrain_ = 0.0;
                oldCm->energies_->edashpot_ = 0.0;
                oldCm->energies_->eslip_ = 0.0;
            }
        }
        assert(lin_F_ == lin_F_);
    }
    void ContactModelARRLinear::setNonForcePropsFrom(IContactModel *old) {
        // Only called for contacts with wall facets when the wall resolution scheme
        // is set to full!
        // Only do something if the contact model is of the same type
        if (old->getName().compare("arrlinear",Qt::CaseInsensitive) == 0 && !isBonded()) {
            ContactModelARRLinear *oldCm = (ContactModelARRLinear *)old;
            kn_ = oldCm->kn_;
            ks_ = oldCm->ks_;
            fric_ = oldCm->fric_;
            lin_mode_ = oldCm->lin_mode_;
            rgap_ = oldCm->rgap_;
            res_fric_ = oldCm->res_fric_;
            res_S_ = oldCm->res_S_;
            kr_ = oldCm->kr_;
            fr_ = oldCm->fr_;
            a_f0_ = oldCm->a_f0_;
            a_d0_ = oldCm->a_d0_;
            userArea_ = oldCm->userArea_;
            if (oldCm->dpProps_) {
                if (!dpProps_)
                    dpProps_ = NEWC(dpProps());
                dpProps_->dp_nratio_ = oldCm->dpProps_->dp_nratio_;
                dpProps_->dp_sratio_ = oldCm->dpProps_->dp_sratio_;
                dpProps_->dp_mode_ = oldCm->dpProps_->dp_mode_;
            }
        }
    }
    
    DVect ContactModelARRLinear::getForce(const IContactMechanical *) const {
        DVect ret(lin_F_);
        if (dpProps_)
            ret += dpProps_->dp_F_;
        ret.rdof(0) -= a_F_;
        return ret;
    }
    DAVect ContactModelARRLinear::getMomentOn1(const IContactMechanical *c) const {
        DVect force = getForce(c);
        DAVect ret(res_M_);
        c->updateResultingTorqueOn1Local(force,&ret);
        return ret;
    }
    DAVect ContactModelARRLinear::getMomentOn2(const IContactMechanical *c) const {
        DVect force = getForce(c);
        DAVect ret(res_M_);
        c->updateResultingTorqueOn2Local(force,&ret);
        return ret;
    }
    void ContactModelARRLinear::setDampCoefficients(const double &mass,double *vcn,double *vcs) {
        *vcn = dpProps_->dp_nratio_ * 2.0 * sqrt(mass*(kn_));
        *vcs = dpProps_->dp_sratio_ * 2.0 * sqrt(mass*(ks_));
    }
} // namespace cmodelsxd
// EoF
 | 
| Was this helpful? ... | PFC © 2021, Itasca | Updated: Feb 25, 2024 |