EEPA Model Implementation
See this page for the documentation of this contact model.
contactmodeleepa.h
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434  | #pragma once
// contactmodeleepa.h
#include "contactmodel/src/contactmodelmechanical.h"
#ifdef EEPA_LIB
#  define EEPA_EXPORT EXPORT_TAG
#elif defined(NO_MODEL_IMPORT)
#  define EEPA_EXPORT
#else
#  define EEPA_EXPORT IMPORT_TAG
#endif
namespace cmodelsxd {
	using namespace itasca;
	class ContactModelEEPA : public ContactModelMechanical {
	public:
		// Constructor: Set default values for contact model properties.
		EEPA_EXPORT ContactModelEEPA();
		// Destructor, called when contact is deleted: free allocated memory, etc.
		EEPA_EXPORT virtual ~ContactModelEEPA();
		// Contact model name (used as keyword for commands and FISH).
		virtual QString  getName() const { return "eepa"; }
		// The index provides a quick way to determine the type of contact model.
		// Each type of contact model in PFC must have a unique index; this is assigned
		// by PFC when the contact model is loaded. This index should be set to -1
		virtual void     setIndex(int i) { index_ = i; }
		virtual int      getIndex() const { return index_; }
		// Contact model version number (e.g., MyModel05_1). The version number can be
		// accessed during the save-restore operation (within the archive method,
		// testing {stream.getRestoreVersion() == getMinorVersion()} to allow for 
		// future modifications to the contact model data structure.
		virtual uint     getMinorVersion() const;
		// Copy the state information to a newly created contact model.
		// Provide access to state information, for use by copy method.
		virtual void     copy(const ContactModel *c);
		// Provide save-restore capability for the state information.
		virtual void     archive(ArchiveStream &);
		// Enumerator for the properties.
		enum PropertyKeys {
			kwShear = 1
			, kwPoiss
			, kwFric
			, kwEepaF
			, kwEepaS
			, kwRGap
			, kwDpNRatio
			, kwDpSRatio
			, kwDpMode
			, kwDpF
			, kwResFric
			, kwResMoment
			, kwResS
			, kwOverlapMax
			, kwPlasRat
			, kwLuExp
			, kwPullOff
			, kwAdhExp
			, kwSurfAdh
			, kwKsFac		
			, kwFmin
		};
		// Contact model property names in a comma separated list. The order corresponds with
		// the order of the PropertyKeys enumerator above. One can visualize any of these 
		// properties in PFC automatically. 
		virtual QString  getProperties() const {
			return "eepa_shear"
				",eepa_poiss"
				",fric"
				",eepa_force"
				",eepa_slip"
				",rgap"
				",dp_nratio"
				",dp_sratio"
				",dp_mode"
				",dp_force"
				",rr_fric"
				",rr_moment"
				",rr_slip"
				",overlap_max"
				",plas_ratio"
				",lu_exp"
				",pull_off"
				",adh_exp"
				",surf_adh"
				",ks_fac"
				",f_min";			
		}
		// Enumerator for the energies.
		enum EnergyKeys {
			kwEStrain = 1
			, kwERRStrain
			, kwESlip
			, kwERRSlip
			, kwEDashpot
		};
		// Contact model energy names in a comma separated list. The order corresponds with
		// the order of the EnergyKeys enumerator above. 
		virtual QString  getEnergies() const {
			return "energy-strain-eepa"
				",energy-rrstrain"
				",energy-slip"
				",energy-rrslip"
				",energy-dashpot";
		}
		// Returns the value of the energy (base 1 - getEnergy(1) returns the estrain energy).
		virtual double   getEnergy(uint i) const;
		// Returns whether or not each energy is accumulated (base 1 - getEnergyAccumulate(1) 
		// returns whether or not the estrain energy is accumulated which is false).
		virtual bool     getEnergyAccumulate(uint i) const;
		// Set an energy value (base 1 - setEnergy(1) sets the estrain energy).
		virtual void     setEnergy(uint i, const double &d); // Base 1
		// Activate the energy. This is only called if the energy tracking is enabled. 
		virtual void     activateEnergy() { if (energies_) return; energies_ = NEWC(Energies()); }
		// Returns whether or not the energy tracking has been enabled for this contact.
		virtual bool     getEnergyActivated() const { return (energies_ != 0); }
		// Enumerator for contact model related FISH callback events. 
		enum FishCallEvents {
			fActivated = 0
			, fSlipChange
		};
		// Contact model FISH callback event names in a comma separated list. The order corresponds with
		// the order of the FishCallEvents enumerator above. 
		virtual QString  getFishCallEvents() const {
			return
				"contact_activated"
				",slip_change";
		}
		// Return the specified contact model property.
		virtual QVariant getProperty(uint i, const IContact *) const;
		// The return value denotes whether or not the property corresponds to the global
		// or local coordinate system (TRUE: global system, FALSE: local system). The
		// local system is the contact-plane system (nst) defined as follows.
		// If a vector V is expressed in the local system as (Vn, Vs, Vt), then V is
		// expressed in the global system as {Vn*nc + Vs*sc + Vt*tc} where where nc, sc
		// and tc are unit vectors in directions of the nst axes.
		// This is used when rendering contact model properties that are vectors.
		virtual bool     getPropertyGlobal(uint i) const;
		// Set the specified contact model property, ensuring that it is of the correct type
		// and within the correct range --- if not, then throw an exception.
		// The return value denotes whether or not the update has affected the timestep
		// computation (by having modified the translational or rotational tangent stiffnesses).
		// If true is returned, then the timestep will be recomputed.
		virtual bool     setProperty(uint i, const QVariant &v, IContact *);
		// The return value denotes whether or not the property is read-only
		// (TRUE: read-only, FALSE: read-write).
		virtual bool     getPropertyReadOnly(uint i) const;
		// The return value denotes whether or not the property is inheritable
		// (TRUE: inheritable, FALSE: not inheritable). Inheritance is provided by
		// the endPropertyUpdated method.
		virtual bool     supportsInheritance(uint i) const;
		// Return whether or not inheritance is enabled for the specified property.
		virtual bool     getInheritance(uint i) const { assert(i < 32); quint32 mask = to<quint32>(1 << i);  return (inheritanceField_ & mask) ? true : false; }
		// Set the inheritance flag for the specified property.
		virtual void     setInheritance(uint i, bool b) { assert(i < 32); quint32 mask = to<quint32>(1 << i);  if (b) inheritanceField_ |= mask;  else inheritanceField_ &= ~mask; }
		// Prepare for entry into ForceDispLaw. The validate function is called when:
		// (1) the contact is created, (2) a property of the contact that returns a true via
		// the setProperty method has been modified and (3) when a set of cycles is executed
		// via the {cycle N} command.
		// Return value indicates contact activity (TRUE: active, FALSE: inactive).
		virtual bool    validate(ContactModelMechanicalState *state, const double ×tep);
		// The endPropertyUpdated method is called whenever a surface property (with a name
		// that matches an inheritable contact model property name) of one of the contacting
		// pieces is modified. This allows the contact model to update its associated
		// properties. The return value denotes whether or not the update has affected
		// the time step computation (by having modified the translational or rotational
		// tangent stiffnesses). If true is returned, then the time step will be recomputed.  
		virtual bool    endPropertyUpdated(const QString &name, const IContactMechanical *c);
		// The forceDisplacementLaw function is called during each cycle. Given the relative
		// motion of the two contacting pieces (via
		//   state->relativeTranslationalIncrement_ (Ddn, Ddss, Ddst)
		//   state->relativeAngularIncrement_       (Dtt, Dtbs, Dtbt)
		//     Ddn  : relative normal-displacement increment, Ddn > 0 is opening
		//     Ddss : relative  shear-displacement increment (s-axis component)
		//     Ddst : relative  shear-displacement increment (t-axis component)
		//     Dtt  : relative twist-rotation increment
		//     Dtbs : relative  bend-rotation increment (s-axis component)
		//     Dtbt : relative  bend-rotation increment (t-axis component)
		//       The relative displacement and rotation increments:
		//         Dd = Ddn*nc + Ddss*sc + Ddst*tc
		//         Dt = Dtt*nc + Dtbs*sc + Dtbt*tc
		//       where nc, sc and tc are unit vectors in direc. of the nst axes, respectively.
		//       [see {Table 1: Contact State Variables} in PFC Model Components:
		//       Contacts and Contact Models: Contact Resolution]
		// ) and the contact properties, this function must update the contact force and
		// moment.
		//   The force_ is acting on piece 2, and is expressed in the local coordinate system
		//   (defined in getPropertyGlobal) such that the first component positive denotes
		//   compression. If we define the moment acting on piece 2 by Mc, and Mc is expressed
		//   in the local coordinate system (defined in getPropertyGlobal), then we must use the getMechanicalContact()->updateResultingTorquesLocal(...) method to 
		// get the total moment. 
		// The return value indicates the contact activity status (TRUE: active, FALSE:
		// inactive) during the next cycle.
		// Additional information:
		//   * If state->activated() is true, then the contact has just become active (it was
		//     inactive during the previous time step).
		//   * Fully elastic behavior is enforced during the SOLVE ELASTIC command by having
		//     the forceDispLaw handle the case of {state->canFail_ == true}.
		virtual bool    forceDisplacementLaw(ContactModelMechanicalState *state, const double ×tep);
		// The getEffectiveXStiffness functions return the translational and rotational
		// tangent stiffnesses used to compute a stable time step. When a contact is sliding,
		// the translational tangent shear stiffness is zero (but this stiffness reduction
		// is typically ignored when computing a stable time step). If the contact model
		// includes a dashpot, then the translational stiffnesses must be increased (see
		// Potyondy (2009)).
		//   [Potyondy, D. 'Stiffness Matrix at a Contact Between Two Clumps,' Itasca
		//   Consulting Group, Inc., Minneapolis, MN, Technical Memorandum ICG6863-L,
		//   December 7, 2009.]
		virtual DVect2  getEffectiveTranslationalStiffness() const { return effectiveTranslationalStiffness_; }
		virtual DAVect  getEffectiveRotationalStiffness() const { return effectiveRotationalStiffness_; }
		// Return a new instance of the contact model. This is used in the CMAT
		// when a new contact is created. 
		virtual ContactModelEEPA *clone() const { return NEWC(ContactModelEEPA()); }
		// The getActivityDistance function is called by the contact-resolution logic when
		// the CMAT is modified. Return value is the activity distance used by the
		// checkActivity function.
		virtual double              getActivityDistance() const { return rgap_; }							
		// The isOKToDelete function is called by the contact-resolution logic when...
		// Return value indicates whether or not the contact may be deleted.
		// If TRUE, then the contact may be deleted when it is inactive.
		// If FALSE, then the contact may not be deleted (under any condition).
		virtual bool                isOKToDelete() const { return !isBonded(); }
		// Zero the forces and moments stored in the contact model. This function is called
		// when the contact becomes inactive.
		virtual void                resetForcesAndMoments() {
			eepa_F(DVect(0.0)); dp_F(DVect(0.0));
			res_M(DAVect(0.0));																			
			if (energies_) {
				//energies_->estrain_ = 0.0;
				energies_->errstrain_ = 0.0;
			}
			Moverlap_ = 0.0;																// reset the history dependend variables
			Poverlap_exp_ = 0.0;
			branch_ = 1;
		}
		virtual void     setForce(const DVect &v, IContact *c);
		virtual void     setArea(const double&) { throw Exception("The setArea method cannot be used with the EEPA contact model."); }
		virtual double   getArea() const { return 0.0; }
		// The checkActivity function is called by the contact-resolution logic when...
		// Return value indicates contact activity (TRUE: active, FALSE: inactive).
		// A contact with the arrlinear model is active if the surface gap is less than
		// or equal to the attraction range (a_d0_).
		virtual bool     checkActivity(const double &gap) { return  gap <= rgap_; }							
		
		// Returns the sliding state (FALSE is returned if not implemented).
		virtual bool     isSliding() const { return eepa_S_; }
		// Returns the bonding state (FALSE is returned if not implemented).
		virtual bool     isBonded() const { return false; }
		// Both of these methods are called only for contacts with facets where the wall 
		// resolution scheme is set the full. In such cases one might wish to propagate 
		// contact state information (e.g., shear force) from one active contact to another. 
		// See the Faceted Wall section in the documentation. 
		// Return the total force that the contact model holds.
		virtual DVect    getForce(const IContactMechanical *) const;
		// Return the total moment on 1 that the contact model holds
		virtual DAVect   getMomentOn1(const IContactMechanical *) const;
		// Return the total moment on 1 that the contact model holds
		virtual DAVect   getMomentOn2(const IContactMechanical *) const;
		// Methods to get and set properties. 
		const double & shear() const { return shear_; }
		void           shear(const double &d) { shear_ = d; }
		const double & poiss() const { return poiss_; }
		void           poiss(const double &d) { poiss_ = d; }
		const double & fric() const { return fric_; }
		void           fric(const double &d) { fric_ = d; }
		const DVect &  eepa_F() const { return eepa_F_; }
		void           eepa_F(const DVect &f) { eepa_F_ = f; }
		bool           eepa_S() const { return eepa_S_; }
		void           eepa_S(bool b) { eepa_S_ = b; }
		const double & rgap() const { return rgap_; }
		void           rgap(const double &d) { rgap_ = d; }
		const double & Moverlap() const { return Moverlap_; }
		void           Moverlap(const double &d) { Moverlap_ = d; }
		const double & Poverlap_exp() const { return Poverlap_exp_; }
		void           Poverlap_exp(const double &d) { Poverlap_exp_ = d; }
		const double & plas_ratio() const { return plas_ratio_; }
		void           plas_ratio(const double &d) { plas_ratio_ = d; }
		const double & lu_exp() const { return lu_exp_; }
		void		   lu_exp(const double &d) { lu_exp_ = d; }
		const double & pull_off() const { return pull_off_; }
		void           pull_off(const double &d) { pull_off_ = d; }
		const double & adh_exp() const { return adh_exp_; }
		void	       adh_exp(const double &d) { adh_exp_ = d; }
		const double & surf_adh() const { return surf_adh_; }
		void           surf_adh(const double &d) { surf_adh_ = d; }
		const double & lu_exp_inv() const { return lu_exp_inv_; }
		void           lu_exp_inv(const double &d) { lu_exp_inv_ = d; }
		const double & k1() const { return k1_; }
		void           k1(const double &d) { k1_ = d; }
		const double & k2() const { return k2_; }
		void           k2(const double &d) { k2_ = d; }
		const double & kadh() const { return kadh_; }
		void           kadh(const double &d) { kadh_ = d; }
		const double & ks() const { return ks_; }
		void           ks(const double &d) { ks_ = d; }
		const double & r_hertz() const { return r_hertz_; }
		void           r_hertz(const double &d) { r_hertz_ = d; }
		const double & ks_fac() const { return ks_fac_; }
		void           ks_fac(const double &d) { ks_fac_ = d; }
		const double & f_min() const { return f_min_; }
		void           f_min(const double &d) { f_min_ = d; }
		const int    & branch() const { return branch_; }
		void           branch(const int &d) { branch_ = d; }
		const double & rbar_square() const { return rbar_square_; }
		void           rbar_square(const double &d) { rbar_square_ = d; }
		bool     hasDamping() const { return dpProps_ ? true : false; }
		double   dp_nratio() const { return (hasDamping() ? (dpProps_->dp_nratio_) : 0.0); }
		void     dp_nratio(const double &d) { if (!hasDamping()) return; dpProps_->dp_nratio_ = d; }
		double   dp_sratio() const { return hasDamping() ? dpProps_->dp_sratio_ : 0.0; }
		void     dp_sratio(const double &d) { if (!hasDamping()) return; dpProps_->dp_sratio_ = d; }
		int      dp_mode() const { return hasDamping() ? dpProps_->dp_mode_ : -1; }
		void     dp_mode(int i) { if (!hasDamping()) return; dpProps_->dp_mode_ = i; }
		DVect    dp_F() const { return hasDamping() ? dpProps_->dp_F_ : DVect(0.0); }
		void     dp_F(const DVect &f) { if (!hasDamping()) return; dpProps_->dp_F_ = f; }
		bool    hasEnergies() const { return energies_ ? true : false; }
		double  estrain() const { return hasEnergies() ? energies_->estrain_ : 0.0; }
		void    estrain(const double &d) { if (!hasEnergies()) return; energies_->estrain_ = d; }
		double  errstrain() const { return hasEnergies() ? energies_->errstrain_ : 0.0; }
		void    errstrain(const double &d) { if (!hasEnergies()) return; energies_->errstrain_ = d; }
		double  eslip() const { return hasEnergies() ? energies_->eslip_ : 0.0; }
		void    eslip(const double &d) { if (!hasEnergies()) return; energies_->eslip_ = d; }
		double  errslip() const { return hasEnergies() ? energies_->errslip_ : 0.0; }
		void    errslip(const double &d) { if (!hasEnergies()) return; energies_->errslip_ = d; }
		double  edashpot() const { return hasEnergies() ? energies_->edashpot_ : 0.0; }
		void    edashpot(const double &d) { if (!hasEnergies()) return; energies_->edashpot_ = d; }
		
		uint inheritanceField() const { return inheritanceField_; }
		void inheritanceField(uint i) { inheritanceField_ = i; }
		const DVect2 & effectiveTranslationalStiffness()  const { return effectiveTranslationalStiffness_; }
		void           effectiveTranslationalStiffness(const DVect2 &v) { effectiveTranslationalStiffness_ = v; }
		const DAVect & effectiveRotationalStiffness()  const { return effectiveRotationalStiffness_; }
		void           effectiveRotationalStiffness(const DAVect &v) { effectiveRotationalStiffness_ = v; }
		// Rolling resistance methods
		const double & res_fric() const { return res_fric_; }
		void           res_fric(const double &d) { res_fric_ = d; }
		const DAVect & res_M() const { return res_M_; }
		void           res_M(const DAVect &f) { res_M_ = f; }
		bool           res_S() const { return res_S_; }
		void           res_S(bool b) { res_S_ = b; }
		const double & kr() const { return kr_; }
		void           kr(const double &d) { kr_ = d; }
		const double & fr() const { return fr_; }
		void           fr(const double &d) { fr_ = d; }
	private:
		// Index - used internally by PFC. Should be set to -1 in the cpp file. 
		static int index_;
		// Structure to store the energies. 
		struct Energies {
			Energies() : estrain_(0.0), errstrain_(0.0), eslip_(0.0), errslip_(0.0), edashpot_(0.0) {}
			double estrain_;   // elastic energy stored in EEPA group 
			double errstrain_; // elastic energy stored in rolling resistance group
			double eslip_;     // work dissipated by friction 
			double errslip_;   // work dissipated by rolling resistance friction 
			double edashpot_;  // work dissipated by dashpots
		};
		// Structure to store dashpot quantities. 
		struct dpProps {
			dpProps() : dp_nratio_(0.0), dp_sratio_(0.0), dp_mode_(0), dp_F_(DVect(0.0)) {}
			double dp_nratio_;		// normal viscous critical damping ratio
			double dp_sratio_;		// shear  viscous critical damping ratio
			int    dp_mode_;		// for viscous mode (0-1) 0 = no cut-offs;    1 = shear damp cut-off when sliding
			DVect  dp_F_;			// Force in the dashpots
		};
		bool   updateEndStiffCoef(const IContactMechanical *con);
		bool   updateEndFric(const IContactMechanical *con);
		bool   updateEndResFric(const IContactMechanical *con);
		void   updateStiffCoef(const IContactMechanical *con);
		void   updateEffectiveStiffness(ContactModelMechanicalState *state);
		void   setDampCoefficients(const double &mass, double *kn_tangent, double *ks_tangent, double *vcn, double *vcs);
		// Contact model inheritance fields.
		quint32 inheritanceField_;
		// Effective translational stiffness.
		DVect2  effectiveTranslationalStiffness_;
		DAVect  effectiveRotationalStiffness_;      // (Twisting,Bending,Bending) Rotational stiffness (twisting always 0)
		// EEPA model properties 
		double      shear_;				// Shear modulus
		double      poiss_;				// Poisson's ratio
		double      fric_;				// Coulomb friction coefficient
		DVect       eepa_F_;			// Force carried in the eepa model
		bool        eepa_S_;			// The current slip state
		double      rgap_;				// Reference gap 
		dpProps *   dpProps_;			// The viscous properties
		double		Moverlap_;			// Maximum overlap - updated as it evolves
		double		Poverlap_exp_;	    // Plastic overlap raised to the power lu_exp - updated as it evolves
		double		plas_ratio_;		// plasticity ratio
		double		lu_exp_;			// load-unload exponent anlong the k1 and k2 brances
		double		pull_off_;			// constant pull-off force
		double		adh_exp_;			// adhesive branch exponent
		double		surf_adh_;			// surface adhesion energy
		double		lu_exp_inv_;		// inverse of load-unloading exponent
		double      k1_;				// k1 branch stiffness
		double		k2_;				// k2 branch stiffness
		double      kadh_;				// adhesive branch stiffness - updated as the maximum overlap (and plastic overlap) increases
		double      ks_;				// shear stiffness
		double      r_hertz_;    		// effective contact radius = (R1*R2)/(R1 + R2)
		double      ks_fac_;			// shear stiffness scaling factor
		double		f_min_;				// minimum adhesion force limit
		int         branch_;			// 1,2 or 3 for the current branch
		
		// rolling resistance properties
		double res_fric_;       // rolling friction coefficient
		DAVect res_M_;          // moment (bending only)         
		bool   res_S_;          // The current rolling resistance slip state
		double kr_;             // bending rotational stiffness (read-only, calculated internaly) 
		double fr_;             // rolling friction coefficient (rbar*res_fric_) (calculated internaly, not a property)
		double rbar_square_;	// curvature expression used in calculating the rolling stiffness - stays constant for  given contact where kr_ = rbar_square*ks_tangent
		Energies *   energies_; // The energies
	};
} // namespace cmodelsxd
// EoF
 | 
contactmodeleepa.cpp
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051  | // contactmodeleepa.cpp
#include "contactmodeleepa.h"
#include "module/interface/icontactmechanical.h"
#include "module/interface/icontact.h"
#include "module/interface/ipiecemechanical.h"
#include "module/interface/ipiece.h"
#include "module/interface/ifishcalllist.h"
#include "../version.txt"
#include "utility/src/tptr.h"
#include "shared/src/mathutil.h"
#include "kernel/interface/iprogram.h"
#include "module/interface/icontactthermal.h"
#include "contactmodel/src/contactmodelthermal.h"
#include "fish/src/parameter.h"
#ifdef EEPA_LIB
int __stdcall DllMain(void *, unsigned, void *) {
	return 1;
}
extern "C" EXPORT_TAG const char *getName() {
#if DIM==3
	return "contactmodelmechanical3deepa";
#else
	return "contactmodelmechanical2deepa";
#endif
}
extern "C" EXPORT_TAG unsigned getMajorVersion() {
	return MAJOR_VERSION;
}
extern "C" EXPORT_TAG unsigned getMinorVersion() {
	return MINOR_VERSION;
}
extern "C" EXPORT_TAG void *createInstance() {
	cmodelsxd::ContactModelEEPA *m = new cmodelsxd::ContactModelEEPA();
	return (void *)m;
}
#endif 
namespace cmodelsxd {
	static const quint32 shearMask = 0x00000002; // Base 1!
	static const quint32 poissMask = 0x00000004;
	static const quint32 fricMask = 0x00000008;
	static const quint32 resFricMask = 0x00004000;
	using namespace itasca;
	int ContactModelEEPA::index_ = -1;
	UInt ContactModelEEPA::getMinorVersion() const { return MINOR_VERSION; }
	ContactModelEEPA::ContactModelEEPA() : inheritanceField_(shearMask | poissMask | fricMask | resFricMask)
		, effectiveTranslationalStiffness_(DVect2(0.0))
		, effectiveRotationalStiffness_(DAVect(0.0))
		, shear_(0.0)
		, poiss_(0.0)
		, fric_(0.0)
		, eepa_F_(DVect(0.0))
		, eepa_S_(false)
		, rgap_(0.0)
		, dpProps_(0)
		, res_fric_(0.0)
		, res_M_(DAVect(0.0))
		, res_S_(false)
		, kr_(0.0)
		, fr_(0.0)
		, Moverlap_(0.0)			
		, Poverlap_exp_(0.0)
		, plas_ratio_(0.5)
		, lu_exp_(1.5)
		, pull_off_(0.0)
		, adh_exp_(1.5)
		, surf_adh_(0.0)
		, lu_exp_inv_(0.0)
		, k1_(0.0)			
		, k2_(0.0)			
		, kadh_(0.0)
		, ks_(0.0)					
		, r_hertz_(0.0)
		, ks_fac_(1.0)
		, f_min_(0.0)
		, branch_(1)
		, rbar_square_(0.0)		
		, energies_(0) {
	}
	ContactModelEEPA::~ContactModelEEPA() {
		// Make sure to clean up after yourself!
		if (dpProps_)
			delete dpProps_;
		if (energies_)
			delete energies_;
	}
	void ContactModelEEPA::archive(ArchiveStream &stream) {
		// The stream allows one to archive the values of the contact model
		// so that it can be saved and restored. The minor version can be
		// used here to allow for incremental changes to the contact model too. 
		stream & shear_;
		stream & poiss_;
		stream & fric_;
		stream & eepa_F_;
		stream & eepa_S_;
		stream & rgap_;
		stream & res_fric_;
		stream & res_M_;
		stream & res_S_;
		stream & kr_;
		stream & fr_;
		stream & Moverlap_;									
		stream & Poverlap_exp_;
		stream & plas_ratio_;
		stream & lu_exp_;
		stream & pull_off_;
		stream & adh_exp_;
		stream & surf_adh_;
		stream & lu_exp_inv_;
		stream & k1_;			
		stream & k2_;			
		stream & kadh_;
		stream & ks_;										
		stream & r_hertz_;
		stream & ks_fac_;
		stream & f_min_;
		stream & branch_;
		stream & rbar_square_;							
		if (stream.getArchiveState() == ArchiveStream::Save) {
			bool b = false;
			if (dpProps_) {
				b = true;
				stream & b;
				stream & dpProps_->dp_nratio_;
				stream & dpProps_->dp_sratio_;
				stream & dpProps_->dp_mode_;
				stream & dpProps_->dp_F_;
			}
			else
				stream & b;
			b = false;
			if (energies_) {
				b = true;
				stream & b;
				stream & energies_->estrain_;
				stream & energies_->errstrain_;
				stream & energies_->eslip_;
				stream & energies_->errslip_;
				stream & energies_->edashpot_;
			}
			else
				stream & b;
		}
		else {
			bool b(false);
			stream & b;
			if (b) {
				if (!dpProps_)
					dpProps_ = NEWC(dpProps());
				stream & dpProps_->dp_nratio_;
				stream & dpProps_->dp_sratio_;
				stream & dpProps_->dp_mode_;
				stream & dpProps_->dp_F_;
			}
			stream & b;
			if (b) {
				if (!energies_)
					energies_ = NEWC(Energies());
				stream & energies_->estrain_;
				stream & energies_->errstrain_;
				stream & energies_->eslip_;
				stream & energies_->errslip_;
				stream & energies_->edashpot_;
			}
		}
		stream & inheritanceField_;
		stream & effectiveTranslationalStiffness_;
		stream & effectiveRotationalStiffness_;
	}
	void ContactModelEEPA::copy(const ContactModel *cm) {
		// Copy all of the contact model properties. Used in the CMAT 
		// when a new contact is created. 
		ContactModelMechanical::copy(cm);
		const ContactModelEEPA *in = dynamic_cast<const ContactModelEEPA*>(cm);
		if (!in) throw std::runtime_error("Internal error: contact model dynamic cast failed.");
		shear(in->shear());
		poiss(in->poiss());
		fric(in->fric());
		eepa_F(in->eepa_F());
		eepa_S(in->eepa_S());
		rgap(in->rgap());
		res_fric(in->res_fric());
		res_M(in->res_M());
		res_S(in->res_S());
		kr(in->kr());
		fr(in->fr());
		Moverlap(in->Moverlap());					
		Poverlap_exp(in->Poverlap_exp());
		plas_ratio(in->plas_ratio());
		lu_exp(in->lu_exp());
		pull_off(in->pull_off());
		adh_exp(in->adh_exp());
		surf_adh(in->surf_adh());
		lu_exp_inv(in->lu_exp_inv());
		k1(in->k1());			
		k2(in->k2());			
		kadh(in->kadh());
		ks(in->ks());	
		r_hertz(in->r_hertz());
		ks_fac(in->ks_fac());
		f_min(in->f_min());
		branch(in->branch());
		rbar_square(in->rbar_square());				
		if (in->hasDamping()) {
			if (!dpProps_)
				dpProps_ = NEWC(dpProps());
			dp_nratio(in->dp_nratio());
			dp_sratio(in->dp_sratio());
			dp_mode(in->dp_mode());
			dp_F(in->dp_F());
		}
		if (in->hasEnergies()) {
			if (!energies_)
				energies_ = NEWC(Energies());
			estrain(in->estrain());
			errstrain(in->errstrain());
			eslip(in->eslip());
			errslip(in->errslip());
			edashpot(in->edashpot());
		}
		inheritanceField(in->inheritanceField());
		effectiveTranslationalStiffness(in->effectiveTranslationalStiffness());
		effectiveRotationalStiffness(in->effectiveRotationalStiffness());
	}
	QVariant ContactModelEEPA::getProperty(uint i, const IContact *con) const {
		// Return the property. The IContact pointer is provided so that 
		// more complicated properties, depending on contact characteristics,
		// can be calcualted. 
		QVariant var;
		switch (i) {
		case kwShear:     return shear_;
		case kwPoiss:     return poiss_;
		case kwFric:      return fric_;
		case kwEepaF:     var.setValue(eepa_F_); return var;
		case kwEepaS:     return eepa_S_;
		case kwRGap:      return rgap_;
		case kwDpNRatio:  return dpProps_ ? dpProps_->dp_nratio_ : 0;
		case kwDpSRatio:  return dpProps_ ? dpProps_->dp_sratio_ : 0;
		case kwDpMode:    return dpProps_ ? dpProps_->dp_mode_ : 0;
		case kwDpF: {
			dpProps_ ? var.setValue(dpProps_->dp_F_) : var.setValue(DVect(0.0));
			return var;
		}
		case kwResFric:    return res_fric_;
		case kwResMoment:  var.setValue(res_M_); return var;
		case kwResS:       return res_S_;
		case kwOverlapMax: return Moverlap_;
		case kwPlasRat:	   return plas_ratio_;
		case kwLuExp:	   return lu_exp_;
		case kwPullOff:	   return pull_off_;
		case kwAdhExp:	   return adh_exp_;
		case kwSurfAdh:	   return surf_adh_;
		case kwKsFac:	   return ks_fac_;															
		case kwFmin:	   return f_min_;
		}
		assert(0);
		return QVariant();
	}
	bool ContactModelEEPA::getPropertyGlobal(uint i) const {
		// Returns whether or not a property is held in the global axis system (TRUE)
		// or the local system (FALSE). Used by the plotting logic.
		switch (i) {
		case kwEepaF:
		case kwDpF:
		case kwResMoment:
			return false;
		}
		return true;
	}
	bool ContactModelEEPA::setProperty(uint i, const QVariant &v, IContact *) {
		// Set a contact model property. Return value indicates that the timestep
		// should be recalculated. 
		dpProps dp;
		switch (i) {
		case kwShear: {
			if (!v.canConvert<double>())
				throw Exception("eepa_shear must be a double.");
			double val(v.toDouble());
			if (val <= 0.0)
				throw Exception("zero or negative eepa_shear not allowed.");
			shear_ = val;
			return true;
		}
		case kwPoiss: {
			if (!v.canConvert<double>())
				throw Exception("eepa_poiss must be a double.");
			double val(v.toDouble());
			if (val < 0.0 || val > 0.5)
				throw Exception("eepa_poiss must be in the range [0, 0.5].");
			poiss_ = val;
			return true;
		}
		case kwFric: {
			if (!v.canConvert<double>())
				throw Exception("fric must be a double.");
			double val(v.toDouble());
			if (val < 0.0)
				throw Exception("negative fric not allowed.");
			fric_ = val;
			return false;
		}
		case kwEepaF: {
			if (!v.canConvert<DVect>())
				throw Exception("eepa_force must be a vector.");
			DVect val(v.value<DVect>());
			eepa_F_ = val;
			return false;
		}
		case kwRGap: {
			if (!v.canConvert<double>())
				throw Exception("reference gap must be a double.");
			double val(v.toDouble());
			rgap_ = val;
			return false;
		}
		case kwDpNRatio: {
			if (!v.canConvert<double>())
				throw Exception("dp_nratio must be a double.");
			double val(v.toDouble());
			if (val < 0.0)
				throw Exception("negative dp_nratio not allowed.");
			if (val == 0.0 && !dpProps_)
				return false;
			if (!dpProps_)
				dpProps_ = NEWC(dpProps());
			dpProps_->dp_nratio_ = val;
			return true;
		}
		case kwDpSRatio: {
			if (!v.canConvert<double>())
				throw Exception("dp_sratio must be a double.");
			double val(v.toDouble());
			if (val < 0.0)
				throw Exception("negative dp_sratio not allowed.");
			if (val == 0.0 && !dpProps_)
				return false;
			if (!dpProps_)
				dpProps_ = NEWC(dpProps());
			dpProps_->dp_sratio_ = val;
			return true;
		}
		case kwDpMode: {
			if (!v.canConvert<int>())
				throw Exception("the viscous mode dp_mode must be 0 or 1");
			int val(v.toInt());
			if (val == 0 && !dpProps_)
				return false;
			if (val < 0 || val > 1)
				throw Exception("the viscous mode dp_mode must be 0 or 1.");
			if (!dpProps_)
				dpProps_ = NEWC(dpProps());
			dpProps_->dp_mode_ = val;
			return false;
		}
		case kwDpF: {
			if (!v.canConvert<DVect>())
				throw Exception("dp_force must be a vector.");
			DVect val(v.value<DVect>());
			if (val.fsum() == 0.0 && !dpProps_)
				return false;
			if (!dpProps_)
				dpProps_ = NEWC(dpProps());
			dpProps_->dp_F_ = val;
			return false;
		}
		case kwResFric: {
			if (!v.canConvert<double>())
				throw Exception("res_fric must be a double.");
			double val(v.toDouble());
			if (val < 0.0)
				throw Exception("negative res_fric not allowed.");
			res_fric_ = val;
			return true;
		}
		case kwResMoment: {
			DAVect val(0.0);
#ifdef TWOD               
			if (!v.canConvert<DAVect>() && !v.canConvert<double>())
				throw Exception("res_moment must be an angular vector.");
			if (v.canConvert<DAVect>())
				val = DAVect(v.value<DAVect>());
			else
				val = DAVect(v.toDouble());
#else
			if (!v.canConvert<DAVect>() && !v.canConvert<DVect>())
				throw Exception("res_moment must be an angular vector.");
			if (v.canConvert<DAVect>())
				val = DAVect(v.value<DAVect>());
			else
				val = DAVect(v.value<DVect>());
#endif
			res_M_ = val;
			return false;
		}				
		case kwPlasRat: {																				
			if (!v.canConvert<double>())
				throw Exception("plas_ratio must be a double.");
			 double val(v.toDouble());
			 if (val <= 0.0 || val >= 1.0)
			     throw Exception("plas_ratio must be larger than zero and smaller than 1 (0,1).");
			 plas_ratio_ = val;
			 return true;
		}
		case kwLuExp: {
			if (!v.canConvert<double>())
				throw Exception("loading-unloading branch exponent must be a double.");
			double val(v.toDouble());
			if (val < 1.0)
				throw Exception("lu_exp must be 1 or larger. For lu_exp = 1, use the linear contact model 'eepa_lin'.");
			lu_exp_ = val;
			return true;
		}
		case kwPullOff: {
			if (!v.canConvert<double>())
				throw Exception("constant pull-off force must be a double.");
			double val(v.toDouble());
			if (val > 0.0)
				throw Exception("pull_off must be a negative value or zero.");
			pull_off_ = val;
			return false;
		}
		case kwAdhExp: {
			if (!v.canConvert<double>())
				throw Exception("adhesion branch exponent must be a double.");
			double val(v.toDouble());
			if (val < 1.0)
				throw Exception("adh_exp must be equal to or greater than 1.");
			adh_exp_ = val;
			return true;
		}
		case kwSurfAdh: {
			if (!v.canConvert<double>())
				throw Exception("surface adhesion energy must be a double.");
			double val(v.toDouble());
			if (val < 0.0)
				throw Exception("negative surf_adh not allowed.");
			surf_adh_ = val;
			return false;
		}																								
		case kwKsFac: {
			if (!v.canConvert<double>())
				throw Exception("shear stiffness factor must be a double.");
			double val(v.toDouble());
			if (val <= 0.0)
				throw Exception("zero or negative ks_fac not allowed.");
			ks_fac_ = val;
			return true;
		}																								
		}//switch
		return false;
	}
	bool ContactModelEEPA::getPropertyReadOnly(uint i) const {
		// Returns TRUE if a property is read only or FALSE otherwise. 
		switch (i) {
		case kwDpF:
		case kwEepaS:
		case kwResS:
		case kwOverlapMax:
		case kwFmin:
			return true;
		default:
			break;
		}
		return false;
	}
	bool ContactModelEEPA::supportsInheritance(uint i) const {
		// Returns TRUE if a property supports inheritance or FALSE otherwise. 
		switch (i) {
		case kwShear:
		case kwPoiss:
		case kwFric:
		case kwResFric:
			return true;
		default:
			break;
		}
		return false;
	}
	double ContactModelEEPA::getEnergy(uint i) const {
		// Return an energy value. 
		double ret(0.0);
		if (!energies_)
			return ret;
		switch (i) {
		case kwEStrain:    return energies_->estrain_;
		case kwERRStrain:  return energies_->errstrain_;
		case kwESlip:      return energies_->eslip_;
		case kwERRSlip:    return energies_->errslip_;
		case kwEDashpot:   return energies_->edashpot_;
		}
		assert(0);
		return ret;
	}
	bool ContactModelEEPA::getEnergyAccumulate(uint i) const {
		// Returns TRUE if the corresponding energy is accumulated or FALSE otherwise.
		switch (i) {
		case kwEStrain:   return true;
		case kwERRStrain: return false;
		case kwESlip:     return true;
		case kwERRSlip:   return true;
		case kwEDashpot:  return true;
		}
		assert(0);
		return false;
	}
	void ContactModelEEPA::setEnergy(uint i, const double &d) {
		// Set an energy value. 
		if (!energies_) return;
		switch (i) {
		case kwEStrain:    energies_->estrain_ = d;   return;
		case kwERRStrain:  energies_->errstrain_ = d; return;
		case kwESlip:      energies_->eslip_ = d;     return;
		case kwERRSlip:    energies_->errslip_ = d;   return;
		case kwEDashpot:   energies_->edashpot_ = d;  return;
		}
		assert(0);
		return;
	}
	bool ContactModelEEPA::validate(ContactModelMechanicalState *state, const double &) {
		// Validate the / Prepare for entry into ForceDispLaw. The validate function is called when:
		// (1) the contact is created, (2) a property of the contact that returns a true via
		// the setProperty method has been modified and (3) when a set of cycles is executed
		// via the {cycle N} command.
		// Return value indicates contact activity (TRUE: active, FALSE: inactive).
		assert(state);
		const IContactMechanical *c = state->getMechanicalContact();
		assert(c);
		//
		if (state->trackEnergy_)
			activateEnergy();
		//		
		if ((inheritanceField_ & shearMask) || (inheritanceField_ & poissMask))
			updateEndStiffCoef(c);
		if (inheritanceField_ & fricMask)
			updateEndFric(c);
		if (inheritanceField_ & resFricMask)
			updateEndResFric(c);
		//
		if (shear_ <= 0.0) {
			throw Exception("'eepa_shear' must be specified using a value larger than zero in the 'eepa' model.");
		}
		//
		updateStiffCoef(c);												// calculate the stiffness values based on the material properties - specified directly or via inheritance
		updateEffectiveStiffness(state);								// effective stiffness for translation and rotation used in the time step estimation
		//
		return checkActivity(state->gap_);
	}
	void ContactModelEEPA::updateStiffCoef(const IContactMechanical *con) {
		//
		double c12 = con->getEnd1Curvature().y();
		double c22 = con->getEnd2Curvature().y();
		r_hertz_ = c12 + c22;
		if (r_hertz_ == 0.0)
			throw Exception("eepa contact model undefined for 2 non-curved surfaces");
		r_hertz_ = 1.0 / r_hertz_;										// R1*R2/(R1 + R2)
		k1_ = 4.0 / 3.0 * (shear_ / (1 - poiss_)) * sqrt(r_hertz_);	    // k1 loading branch 
		double shear_effective = shear_ / (4.0 - 2.0*poiss_);			// effective shear modulus for contact assuming the two contact pieces are identical in properties
		ks_ = ks_fac_ * 8.0*shear_effective*sqrt(r_hertz_);				// shear stiffness
		k2_ = k1_ / (1.0 - plas_ratio_);								// k2 loading branch
		lu_exp_inv_ = 1.0 / lu_exp_;									// inverse of load-unloading exponent - stored with contact
		// rolling resistance 
		kr_ = 0.0;
		fr_ = 0.0;
		if (res_fric_ > 0.0) {
			rbar_square_ = r_hertz_ * r_hertz_;							// store this value with contact - used again when 'ks_tangent' is updated during loading-unloading to calculate the rolling stiffness
			fr_ = res_fric_ * r_hertz_;									// store this value with contact - used in force-displacement calculation
			kr_ = ks_ * rbar_square_;									// based on 'ks_' for now, this is updated and based on the shear tangent stiffness during loading-unloading
		}
	}
	bool ContactModelEEPA::endPropertyUpdated(const QString &name, const IContactMechanical *c) {
		// The endPropertyUpdated method is called whenever a surface property (with a name
		// that matches an inheritable contact model property name) of one of the contacting
		// pieces is modified. This allows the contact model to update its associated
		// properties. The return value denotes whether or not the update has affected
		// the time step computation (by having modified the translational or rotational
		// tangent stiffnesses). If true is returned, then the time step will be recomputed.  
		assert(c);
		QStringList availableProperties = getProperties().simplified().replace(" ", "").split(",", QString::SkipEmptyParts);
		QRegExp rx(name, Qt::CaseInsensitive);
		int idx = availableProperties.indexOf(rx) + 1;
		bool ret = false;
		if (idx <= 0)
			return ret;
		switch (idx) {
		case kwShear: { //Shear
			if (inheritanceField_ & shearMask)
				ret = true;							// return 'true' to ensure 'validate()' is called to affect the change in Shear Modulus through 'updateEndStiffCoef()' and effective (tangent) stiffnesses
			break;
		}
		case kwPoiss: { //Poisson's
			if (inheritanceField_ & poissMask)
				ret =true;							// return 'true' to ensure 'validate()' is called to affect the change in Poisson's ratio through 'updateEndStiffCoef()' and effective (tangent) stiffnesses
			break;
		}
		case kwFric: { //fric
			if (inheritanceField_ & fricMask)
				updateEndFric(c);					// friction does not influence any of the other parameters or time step size, so directly update the contact model friction
			break;
		}
		case kwResFric: { //rr_fric
			if (inheritanceField_ & resFricMask)
				ret = true;							// return 'true' to ensure 'validate()' is called to affect the change in rolling friction through 'updateEndResFric()' and 'fr_'
			break;
		}
		//
		}
		return ret;
	}
	static const QString gstr("eepa_shear");
	static const QString nustr("eepa_poiss");
	bool ContactModelEEPA::updateEndStiffCoef(const IContactMechanical *con) {
		assert(con);
		double g1 = shear_;
		double g2 = shear_;
		double nu1 = poiss_;
		double nu2 = poiss_;
		QVariant vg1 = con->getEnd1()->getProperty(gstr);
		QVariant vg2 = con->getEnd2()->getProperty(gstr);
		QVariant vnu1 = con->getEnd1()->getProperty(nustr);
		QVariant vnu2 = con->getEnd2()->getProperty(nustr);
		if (vg1.isValid() && vg2.isValid()) {
			g1 = vg1.toDouble();
			g2 = vg2.toDouble();
			if (g1 <= 0.0 || g2 <= 0.0)
				throw Exception("Negative or zero shear modulus not allowed in eepa contact model");
		}
		if (vnu1.isValid() && vnu2.isValid()) {
			nu1 = vnu1.toDouble();
			nu2 = vnu2.toDouble();
			if (nu1 < 0.0 || nu1 > 0.5 || nu2 < 0.0 || nu2 > 0.5)
				throw Exception("Poisson ratio should be in range [0,0.5] in eepa contact model");
		}
		if (g1*g2 == 0.0) return false;
		double es = 1.0 / ((1.0 - nu1) / (2.0*g1) + (1.0 - nu2) / (2.0*g2));
		double gs = 1.0 / ((2.0 - nu1) / g1 + (2.0 - nu2) / g2);
		poiss_ = (4.0*gs - es) / (2.0*gs - es);
		shear_ = 2.0*gs*(2 - poiss_);
		if (shear_ <= 0.0)
			throw Exception("Negative or zero shear modulus not allowed in eepa contact model");
		if (poiss_ < 0.0 || poiss_ > 0.5)
			throw Exception("Poisson ratio should be in range [0,0.5] in eepa contact model");
		return true;
	}
	static const QString fricstr("fric");
	bool ContactModelEEPA::updateEndFric(const IContactMechanical *con) {
		assert(con);
		QVariant v1 = con->getEnd1()->getProperty(fricstr);
		QVariant v2 = con->getEnd2()->getProperty(fricstr);
		if (!v1.isValid() || !v2.isValid())
			return false;
		double fric1 = std::max(0.0, v1.toDouble());
		double fric2 = std::max(0.0, v2.toDouble());
		double val = fric_;
		fric_ = std::min(fric1, fric2);
		if (fric_ <= 0.0)
			throw Exception("Negative friction not allowed in eepa contact model");
		return ((fric_ != val));
	}
	static const QString rfricstr("rr_fric");
	bool ContactModelEEPA::updateEndResFric(const IContactMechanical *con) {
		assert(con);
		QVariant v1 = con->getEnd1()->getProperty(rfricstr);
		QVariant v2 = con->getEnd2()->getProperty(rfricstr);
		if (!v1.isValid() || !v2.isValid())
			return false;
		double rfric1 = std::max(0.0, v1.toDouble());
		double rfric2 = std::max(0.0, v2.toDouble());
		double val = res_fric_;
		res_fric_ = std::min(rfric1, rfric2);
		if (res_fric_ <= 0.0)
			throw Exception("Negative rolling friction not allowed in eepa contact model");
		return ((res_fric_ != val));
	}
	
	void ContactModelEEPA::updateEffectiveStiffness(ContactModelMechanicalState *state) {
		//
		double overlap = rgap_ - state->gap_;
		//
		double kn_tangent = 0.0;
		double ks_tangent = 0.0;
		//
		if (overlap <= 0.0) {													// inactive contact
			// The assumption below is based on the Hill contact model in PFC
			// 0.01% of Diameter = 0.0001*D			
			// For monodisperse system, r_hertz_ = 0.5*R where R is the particle radius
			// r_hertz_ = 0.5*(0.5*D) = 0.25*D where D is the particle diameter
			// D = 4*r_hertz_
			// 0.01%*D = 0.0001*D = 0.0001*4*r_hertz_ = 0.0004*r_hertz_
			overlap = 0.0004*r_hertz_;
			kn_tangent = lu_exp_ * k1_*pow(overlap, lu_exp_ - 1.0);				// k1 loading branch assumed for inactive contacts
			ks_tangent = ks_ * sqrt(overlap);									// tangent stiffness in the shear direction
		}
		else {																	// active contact
			switch (branch_) {
			case 1: {
				kn_tangent = lu_exp_ * k1_*pow(overlap, lu_exp_ - 1.0);
				break;
			}
			case 2: {
				kn_tangent = lu_exp_ * k2_*pow(overlap, lu_exp_ - 1.0);
				break;
			}
			case 3: {
				kn_tangent = adh_exp_ * kadh_*pow(overlap, adh_exp_ - 1.0);
				break;
			}
			}//switch
			ks_tangent = ks_ * sqrt(overlap);
		}
		//
		DVect2 retT(kn_tangent, ks_tangent);
		if (res_fric_ > 0.0) {													// rolling
			kr_ = ks_tangent * rbar_square_;									// based on the tangent shear stiffness (Wensrich and Katterfeld, 2012)
		}
		//
		// correction if viscous damping active
		if (dpProps_) {
			DVect2 correct(1.0);
			if (dpProps_->dp_nratio_)
				correct.rx() = sqrt(1.0 + dpProps_->dp_nratio_*dpProps_->dp_nratio_) - dpProps_->dp_nratio_;
			if (dpProps_->dp_sratio_)
				correct.ry() = sqrt(1.0 + dpProps_->dp_sratio_*dpProps_->dp_sratio_) - dpProps_->dp_sratio_;
			retT /= (correct*correct);
		}
		//
		effectiveTranslationalStiffness_ = retT;									// set
		effectiveRotationalStiffness_ = DAVect(kr_);								// Effective rotational stiffness (bending only)
#if DIM==3 
		effectiveRotationalStiffness_.rx() = 0.0;
#endif
	}
	bool ContactModelEEPA::forceDisplacementLaw(ContactModelMechanicalState *state, const double ×tep) {
		assert(state);
		//
		// Current overlap
		double overlap = rgap_ - state->gap_;
		// Relative translational increment
		DVect trans = state->relativeTranslationalIncrement_;
		//
		// The contact was just activated from an inactive state
		if (state->activated()) {
			// The contact just got activated, set the initial normal force equal to the pull-off force
			eepa_F_.rdof(0) = pull_off_;												
			//
			// Trigger the FISH callback if one is hooked up to the 
			// contact_activated event.
			if (cmEvents_[fActivated] >= 0) {
				// The contact was just activated from an inactive state
				// Trigger the FISH callback if one is hooked up to the 
				// contact_activated event.
				auto c = state->getContact();
				std::vector<fish::Parameter> arg = { fish::Parameter(c->getIThing()) };
				IFishCallList* fi = const_cast<IFishCallList*>(state->getProgram()->findInterface<IFishCallList>());
				fi->setCMFishCallArguments(c, arg, cmEvents_[fActivated]);
			}
		}
		//
		// Angular dispacement increment.
		DAVect ang = state->relativeAngularIncrement_;
		//
		// EEPA NORMAL FORCE ==============================================================================================================	
		//
		double overlap_exp = pow(overlap, lu_exp_);										// current overlap raised to the power "lu_exp"
		double eepa_Fn = eepa_F_.dof(0);												// current normal force value
		DVect eepa_F_old = eepa_F_;														// store for energy computations
		//
		// The updates below only occur when the maximum overlap is exceeded
		if (overlap > Moverlap_) {														// the current overlap is exceeding the maximum it has ever been
			Moverlap_ = overlap;														// update the maximum overlap
			//
			double radius = sqrt(pow(Poverlap_exp_,lu_exp_inv_)*2.0*r_hertz_);			// contact patch radius at plastic overlap   
			f_min_ = pull_off_ - 1.5*M_PI*surf_adh_ *radius;							// update the minimum force based on the surface adhesion energy and the current contact surface area
			//
			double f_min_limit = eepa_Fn - k2_ * overlap_exp;							// the limit of Fmin that can be reached at zero overlap for the current force value
			if (f_min_ < f_min_limit) {
				f_min_ = 0.5*(pull_off_ + f_min_limit);									// if Fmin is less than the limit, set it to half the limit (Morissey, 2013)
			}
			//
			double overlap_min_exp = overlap_exp - (eepa_Fn - f_min_) / k2_;			// the minimum overlap raised to the power lu_exp - the overlap where the k2 unloading branch goes over into the adhesion branch
			kadh_ = (pull_off_ - f_min_) / (pow(overlap_min_exp, adh_exp_*lu_exp_inv_));// stiffness of the adhesion branch	
		}
		//
		double F1 = pull_off_ + k1_ * overlap_exp;								// k1 loading branch force for this overlap
		double F2 = pull_off_ + k2_ * (overlap_exp - Poverlap_exp_);			// k2 loading-unloading branch force for this overlap
		double Fadh = pull_off_ - kadh_ * pow(overlap, adh_exp_);				// adhesion branch force for this overlap
		//
		double kn_tangent = 0.0;												// tangent stiffness in the normal direction - used for time step calculation
		//		
		if (F2 >= F1) {															// the k1 loading branch should be followed
			eepa_Fn = F1;														// set the EEPA force to that of the k1 loading branch
			Poverlap_exp_ = overlap_exp - (F1 - pull_off_) / k2_;				// for the current force (F1), calculate the plastic overlap [not the usual equation based on maximum overlap, but the same result]  
			kn_tangent = lu_exp_ * k1_*pow(overlap, lu_exp_ - 1.0);				// set the tangent stiffness in the normal direction
			branch_ = 1;
		}
		else {																	// will only enter if F2 < F1
			if (F2 > Fadh) {													// on the k2 loading-unloading branch
				eepa_Fn = F2;													// set the EEPA force to that of the k2 loading-unloading branch
				kn_tangent = lu_exp_ * k2_*pow(overlap, lu_exp_ - 1.0); 		// set the tangent stiffness in the normal direction
				branch_ = 2;
			}
			else {																// only enter if F2 < F1 AND F2 < Fadh
				if (trans.x() >= 0.0) {											// contact is unloading along the adhesive branch (can not load along this branch)
					eepa_Fn = Fadh;												// set the EEPA force to that of the adhesive unloading branch
					kn_tangent = adh_exp_ * kadh_*pow(overlap, adh_exp_ - 1.0);	// set the tangent stiffness in the normal direction
					branch_ = 3;
				}
				else {															// loading on the adhesive branch which is not defined
					eepa_Fn += k2_ * pow(-trans.x(), lu_exp_);					// set the EEPA force by incrementing the force from the previous time-step along the k2 loading branch. 
																				// The next time step, the updated Poverlap_exp is used and the code will automatically follow the k2 loading branch since F2 is calculated from this updated Poverlap_exp 
																				// The negative of the increment should be used to ensure a positive value is rasied to the power "lu_exp". The sign is then corrected by adding the force increment to the previous value
					Poverlap_exp_ = overlap_exp + (pull_off_ - eepa_Fn) / k2_;	// update the plastic overlap (raised to the power "lu_exp") which means that the k2 loading-unloading branch has shifted in the unloading direction to start at this point
					kn_tangent = lu_exp_ * k2_*pow(overlap, lu_exp_ - 1.0);		// set the tangent stiffness in the normal direction
					branch_ = 2;
				}
			}
		}
		eepa_F_.rdof(0) = eepa_Fn;												//set the updated normal force component
		//
		// EEPA SHEAR FORCE ==============================================================================================================
		//
		double ks_tangent = ks_ * sqrt(overlap);						// tangent stiffness in the shear direction
		//
		DVect sforce(0.0);
		// dim holds the dimension (e.g., 2 for 2D and 3 for 3D)
		// Loop over the shear components (note: the 0 component is the normal component) and calculate the shear force.
		for (int i = 1; i < dim; ++i)
			sforce.rdof(i) = eepa_F_.dof(i) - trans.dof(i) * ks_tangent;// shear force update
		//
		// The canFail flag corresponds to whether or not the contact can undergo non-linear
		// force-displacement response. If the SOLVE ELASTIC command is given then the 
		// canFail state is set to FALSE. Otherwise it is always TRUE. 
		if (state->canFail_) {
			// Resolve sliding. This is the normal force multiplied by the coefficient of friction.
			double crit = fric_ * std::abs(eepa_Fn - f_min_);														//take absolute value - contact with very small overlap might result in negative value here due to rounding
			// The is the magnitude of the shear force.
			double sfmag = sforce.mag();
			// Sliding occurs when the magnitude of the shear force is greater than the critical value.
			if (sfmag > crit) {
				// Lower the shear force to the critical value for sliding.
				double rat = crit / sfmag;
				sforce *= rat;
				// Handle the slip_change event if one has been hooked up. Sliding has commenced.  
				if (!eepa_S_ && cmEvents_[fSlipChange] >= 0) {
					auto c = state->getContact();
					std::vector<fish::Parameter> arg = { fish::Parameter(c->getIThing()),
														 fish::Parameter((qint64)0) };
					IFishCallList* fi = const_cast<IFishCallList*>(state->getProgram()->findInterface<IFishCallList>());
					fi->setCMFishCallArguments(c, arg, cmEvents_[fSlipChange]);
				}
				eepa_S_ = true;
			}
			else {
				// Handle the slip_change event if one has been hooked up and
				// the contact was previously sliding. Sliding has ceased.  
				if (eepa_S_) {
					if (cmEvents_[fSlipChange] >= 0) {
						auto c = state->getContact();
						std::vector<fish::Parameter> arg = { fish::Parameter(c->getIThing()),
															 fish::Parameter((qint64)1) };
						IFishCallList* fi = const_cast<IFishCallList*>(state->getProgram()->findInterface<IFishCallList>());
						fi->setCMFishCallArguments(c, arg, cmEvents_[fSlipChange]);
					}
					eepa_S_ = false;
				}
			}
		}
		//
		// Set the shear components of the total force.
		for (int i = 1; i < dim; ++i)
			eepa_F_.rdof(i) = sforce.dof(i);
		//
		// EEPA ROLLING RESISTANCE ==============================================================================================================
		//
		DAVect res_M_old = res_M_;													// used in energy calculation only
		if (fr_ == 0.0) {											
			res_M_.fill(0.0);
		}
		else {
			DAVect angStiff(0.0);
			DAVect MomentInc(0.0);
			kr_ = ks_tangent * rbar_square_;										// update rolling stiffness based on the tangent shear stiffness (Wensrich and Katterfeld, 2012)
#if DIM==3 
			angStiff.rx() = 0.0;
			angStiff.ry() = kr_;
#endif
			angStiff.rz() = kr_;
			MomentInc = ang * angStiff * (-1.0);
			res_M_ += MomentInc;
			if (state->canFail_) {
				// Account for bending strength
				double rmax = std::abs(fr_*(eepa_Fn - f_min_));						// Using the same normal force as in the shear limit
				double rmag = res_M_.mag();
				if (rmag > rmax) {
					double fac = rmax / rmag;
					res_M_ *= fac;
					res_S_ = true;
				}
				else {
					res_S_ = false;
				}
			}
		}
		//
		// EEPA TANGENT STIFFNESS FOR TIME STEP UPDATES ==============================================================================================================
		//
		// set effective or tangent stiffness in the normal and shear directions for timestep calculation
		effectiveTranslationalStiffness_ = DVect2(kn_tangent, ks_tangent);
		// set the effective rotational stiffness (bending only)
		effectiveRotationalStiffness_ = DAVect(kr_);
#if DIM==3 
		effectiveRotationalStiffness_.rx() = 0.0;
#endif
		// EEPA DAMPING FORCE ==============================================================================================================
		//
		// Account for dashpot forces if the dashpot structure has been defined. 
		if (dpProps_) {
			dpProps_->dp_F_.fill(0.0);
			double vcn(0.0), vcs(0.0);
			// Calculate the damping coefficients. 
			setDampCoefficients(state->inertialMass_, &kn_tangent, &ks_tangent, &vcn, &vcs);				// this is based on the current tangent loading stiffness
			// First damp the shear components
			for (int i = 1; i < dim; ++i)
				dpProps_->dp_F_.rdof(i) = trans.dof(i) * (-1.0* vcs) / timestep;
			// Damp the normal component
			dpProps_->dp_F_.rx() -= trans.x() * vcn / timestep;
			//
			if (eepa_S_ && dpProps_->dp_mode_ == 1) {
				// Limit in shear if sliding.
				double dfn = dpProps_->dp_F_.rx();
				dpProps_->dp_F_.fill(0.0);
				dpProps_->dp_F_.rx() = dfn;
			}
			// Correct effective translational stiffness
			DVect2 correct(1.0);
			if (dpProps_->dp_nratio_)
				correct.rx() = sqrt(1.0 + dpProps_->dp_nratio_*dpProps_->dp_nratio_) - dpProps_->dp_nratio_;
			if (dpProps_->dp_sratio_)
				correct.ry() = sqrt(1.0 + dpProps_->dp_sratio_*dpProps_->dp_sratio_) - dpProps_->dp_sratio_;
			effectiveTranslationalStiffness_ /= (correct*correct);
		}
		
		//Compute energies if energy tracking has been enabled. 
		if (state->trackEnergy_) {
			assert(energies_);
			// calculate the strain energy increment in the normal direction				 
			energies_->estrain_ -= 0.5*(eepa_F_old.dof(0) + eepa_Fn)*trans.dof(0);
			if (ks_tangent) {
				DVect u_s_elastic = trans;										// set the elastic displacement increment equal to the total displacement increment
				u_s_elastic.rx() = 0.0;											// set the normal component to zero: u_s_elatic = [0, trans_shear_1, trans_shear_2]
				DVect shearF = eepa_F_;											// set the shear force equal to the total EEPA force (including the normal component)
				shearF.rx() = 0.0;												// set the normal component to zero: shearF = [0, shear_force_1, shear_force_2]
				eepa_F_old.rx() = 0.0;											// set normal component of the previous force equal to zero
				DVect avg_F_s = (shearF + eepa_F_old)*0.5;						// average shear force vector
				if (eepa_S_) {													// if sliding, calculate the slip energy and accumulate it
					DVect u_s_total = u_s_elastic;								// total shear displacement increment
					u_s_elastic = (shearF - eepa_F_old) / ks_tangent;			// elastic shear displacement increment
					energies_->eslip_ -= std::min(0.0, (avg_F_s | (u_s_total + u_s_elastic))); // where (u_s_total + u_s_elatic) is the slip displacment increment (due to the sign convention, the terms are added up)
				}
				energies_->estrain_ -= avg_F_s | u_s_elastic;
			}
			// Add the rolling resistance energy contributions.							// done incrementally since the stiffness kr_ changes with the tangent shear stiffness (non-linearly)
			if (kr_) {
				DAVect t_s_elastic = ang;												// set the elastic rotation increment equal to the total angle increment
				DAVect avg_M = (res_M_ + res_M_old)*0.5;								// average moment from this time step and the previous
				if (res_S_) {															// if sliding, calculate the slip energy and accumulate it
					t_s_elastic = (res_M_ - res_M_old) / kr_;							// elastic angle increment
					energies_->errslip_ -= std::min(0.0, (avg_M | (ang + t_s_elastic)));// where (ang + t_s_elatic) is the slip rotation increment (due to the sign convention, the terms are added up)
				}
				energies_->errstrain_ -= avg_M | t_s_elastic;							// add the elastic component (if any - if previous force equals current force, the elastic incrment is zero)
			}
			// Calculate damping energy (accumulated) if the dashpots are active. 
			if (dpProps_) {
				energies_->edashpot_ -= dpProps_->dp_F_ | trans;
			}
		}
		// This is just a sanity check to ensure, in debug mode, that the force isn't wonky. 
		assert(eepa_F_ == eepa_F_);
		return true;
	}
	void ContactModelEEPA::setForce(const DVect &v, IContact *c) {
		//
	}
	DVect ContactModelEEPA::getForce(const IContactMechanical *) const {
		DVect ret(eepa_F_);																				
		if (dpProps_)
			ret += dpProps_->dp_F_;																		
		return ret;
	}
	DAVect ContactModelEEPA::getMomentOn1(const IContactMechanical *c) const {
		DVect force = getForce(c);
		DAVect ret(res_M_);
		c->updateResultingTorqueOn1Local(force, &ret);
		return ret;
	}
	DAVect ContactModelEEPA::getMomentOn2(const IContactMechanical *c) const {
		DVect force = getForce(c);
		DAVect ret(res_M_);
		c->updateResultingTorqueOn2Local(force, &ret);
		return ret;
	}
	void ContactModelEEPA::setDampCoefficients(const double &mass, double *kn_tangent, double *ks_tangent, double *vcn, double *vcs) {
		*vcn = dpProps_->dp_nratio_ * 2.0 * sqrt(mass*(*kn_tangent));
		*vcs = dpProps_->dp_sratio_ * 2.0 * sqrt(mass*(*ks_tangent));
	}
} // namespace cmodelsxd
// EoF
 | 
| Was this helpful? ... | PFC © 2021, Itasca | Updated: Feb 25, 2024 |