Flat-Joint Model Implementation
See this page for the documentation of this contact model.
contactmodelflatjoint.h
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369  | #pragma once
// contactmodelflatjoint.h
#include "contactmodel/src/contactmodelmechanical.h"
#ifdef FLATJOINT_LIB
#  define FLATJOINT_EXPORT EXPORT_TAG
#elif defined(NO_MODEL_IMPORT)
#  define FLATJOINT_EXPORT
#else
#  define FLATJOINT_EXPORT IMPORT_TAG
#endif
namespace cmodelsxd {
    using namespace itasca;
    class ContactModelFlatJoint : public ContactModelMechanical {
    public:
        enum PropertyKeys { 
              kwFjNr=1
            , kwFjElem
            , kwFjKn
            , kwFjKs                            
            , kwFjFric   
            , kwFjEmod
            , kwFjKRatio                            
            , kwFjRmul
            , kwFjRadius
            , kwFjGap0
            , kwFjTen 
            , kwFjCoh
            , kwFjFa 
            , kwFjF
            , kwFjM
            , kwFjState
            , kwFjSlip
            , kwFjMType
            , kwFjA
            , kwFjEgap
            , kwFjGap
            , kwFjNstr
            , kwFjSstr
            , kwFjSs
#ifdef THREED
            , kwFjNa
#endif
            , kwFjRelBr
            , kwFjCen
            , kwFjTrack
            , kwUserArea
            , kwFjCohRes
            , kwFjResMode
        };
         
        FLATJOINT_EXPORT ContactModelFlatJoint();
        FLATJOINT_EXPORT virtual ~ContactModelFlatJoint();
        virtual void                copy(const ContactModel *c) override;
        virtual void                archive(ArchiveStream &); 
        virtual QString  getName() const { return "flatjoint"; }
        virtual void     setIndex(int i) { index_=i;}
        virtual int      getIndex() const {return index_;}
        virtual QString  getProperties() const { return "fj_nr"
                                                        ",fj_elem"
                                                        ",fj_kn"
                                                        ",fj_ks"
                                                        ",fj_fric"
                                                        ",fj_emod"
                                                        ",fj_kratio"
                                                        ",fj_rmul"
                                                        ",fj_radius"
                                                        ",fj_gap0"
                                                        ",fj_ten"
                                                        ",fj_coh"
                                                        ",fj_fa"
                                                        ",fj_force"
                                                        ",fj_moment"
                                                        ",fj_state"
                                                        ",fj_slip"
                                                        ",fj_mtype"
                                                        ",fj_area"
                                                        ",fj_egap"
                                                        ",fj_gap"
                                                        ",fj_sigma"
                                                        ",fj_tau"
                                                        ",fj_shear"
#ifdef THREED
                                                        ",fj_nal"
#endif
                                                        ",fj_relbr"
                                                        ",fj_cen"
                                                        ",fj_track"
                                                        ",user_area"
                                                        ",fj_cohres"
                                                        ",fj_resmode"
                                                        ;}
        enum EnergyKeys { kwEStrain=1,kwESlip};
        virtual QString  getEnergies() const { return "energy-strain,energy-slip";}
        virtual double   getEnergy(uint i) const;  // Base 1
        virtual bool     getEnergyAccumulate(uint i) const; // Base 1
        virtual void     setEnergy(uint i,const double &d); // Base 1
        virtual void     activateEnergy() { if (energies_) return; energies_ = NEWC(Energies());}
        virtual bool     getEnergyActivated() const {return (energies_ !=0);}
        enum FishCallEvents {fActivated=0,fBondBreak,fBroken,fSlipChange};
        virtual QString  getFishCallEvents() const { return "contact_activated,bond_break,broken,all_slip_change"; }
        virtual QVariant getProperty(uint i,const IContact *) const;
        virtual bool     getPropertyGlobal(uint i) const;
        virtual bool     setProperty(uint i,const QVariant &v,IContact *);
        virtual bool     getPropertyReadOnly(uint i) const;
        virtual bool     supportsInheritance(uint ) const { return false; }
        enum MethodKeys { kwBond=1, kwUnbond, KwDeformability, KwUpdateGeom, kwArea, kwInitialize};
        virtual QString  getMethods() const { return "bond"
                                                     ",unbond"
                                                     ",deformability"
                                                     ",update_geometry"
                                                     ",area"
                                                     ",initialize"
                                            ;}
        
        virtual QString  getMethodArguments(uint i) const; 
        
        virtual bool     setMethod(uint i,const QVector<QVariant> &vl,IContact *con=0); // Base 1 - returns true if timestep contributions need to be updated
        virtual uint     getMinorVersion() const;
        virtual bool    validate(ContactModelMechanicalState *state,const double ×tep);
        virtual bool    endPropertyUpdated(const QString &,const IContactMechanical *) { return false; }
        virtual bool    forceDisplacementLaw(ContactModelMechanicalState *state,const double ×tep);
        virtual bool    thermalCoupling(ContactModelMechanicalState*, ContactModelThermalState*, IContactThermal*, const double&);
        virtual DVect2  getEffectiveTranslationalStiffness() const { return effectiveTranslationalStiffness();}
        virtual DAVect  getEffectiveRotationalStiffness() const { return effectiveRotationalStiffness(); }
        virtual ContactModelFlatJoint *clone() const override { return NEWC(ContactModelFlatJoint()); }
        virtual double              getActivityDistance() const {return 0.0;}
        virtual bool                isOKToDelete() const { return !isBonded(); }
        virtual void                resetForcesAndMoments() { fj_f(DVect(0.0)); fj_m(DAVect(0.0)); for (int i=0; i<f_.size(); ++i) f_[i] = DVect(0.0); }
        virtual void                setForce(const DVect &v,IContact *);
        virtual void                setArea(const double &d) { userArea_ = d; }
        virtual double              getArea() const { return userArea_; }
        virtual bool    checkActivity(const double &inGap);
        //virtual bool     isSliding() const { return fj_s_; }
        virtual bool    isBonded() const { FOR(it,bmode_) if ((*it) == 3) return true; return false; }
        virtual void    unbond() { FOR(it,bmode_) *it = 0; }
        int             fj_nr() const               {return fj_nr_;}
        void            fj_nr(int d)                {       fj_nr_= d;}
#ifdef THREED
        int             fj_n() const                { return fj_na_ * fj_nr_; }
        int             fj_na() const               {return fj_na_;}
        void            fj_na(int d)                {       fj_na_= d;}
#else
        int             fj_n() const                { return fj_nr_; }
#endif
        int             fj_elem() const             {return fj_elem_;}
        void            fj_elem(int d)              {       fj_elem_= d;}
        const double &  fj_kn() const               {return fj_kn_;}
        void            fj_kn(const double &d)      {       fj_kn_ = d;}
        const double &  fj_ks() const               {return fj_ks_;}
        void            fj_ks(const double &d)      {       fj_ks_ = d;}
        const double &  fj_fric() const             {return fj_fric_;}
        void            fj_fric(const double &d)    {       fj_fric_ = d;}
        const double &  fj_rmul() const             {return fj_rmul_;}
        void            fj_rmul(const double &d)    {       fj_rmul_ = d;}
        const double &  fj_gap0() const             {return fj_gap0_;}
        void            fj_gap0(const double &d)    {       fj_gap0_ = d;}
        const double &  fj_ten() const              {return fj_ten_;}
        void            fj_ten(const double &d)     {       fj_ten_ = d;}
        const double &  fj_coh() const              {return fj_coh_;}
        void            fj_coh(const double &d)     {       fj_coh_ = d;}
        const double &  fj_cohres() const           {return fj_cohres_;}
        void            fj_cohres(const double &d)  {       fj_cohres_ = d;}
        const double &  fj_fa() const               {return fj_fa_;}
        void            fj_fa(const double &d)      {       fj_fa_ = d;}
        const DVect &   fj_f() const                {return fj_f_;}
        void            fj_f(const DVect &f)        {       fj_f_=f;}
        const DAVect &  fj_m() const                {return fj_m_;}
        void            fj_m(const DAVect &f)       {       fj_m_=f;}
        const DAVect &  fj_m_set() const            {return fj_m_set_;}
        void            fj_m_set(const DAVect &f)   {       fj_m_set_=f;}
        const double &  rmin() const                {return rmin_;}
        void            rmin(const double &d)       {       rmin_ = d;}
        const double &  rbar() const                {return rbar_;}
        void            rbar(const double &d)       {       rbar_ = d;}
        const int &     fj_resmode() const          {return fj_resmode_;}
        void            fj_resmode(const int &i)    {       fj_resmode_ = i;}
        const double &  atot() const                {return atot_;}
        void            atot(const double &d)       {       atot_ = d;}
        const bool      propsFixed() const          {return propsFixed_; }
        void            propsFixed(bool d)          {       propsFixed_ = d;}
        int             mType() const               {return mType_; }
        void            mType(int d)                {       mType_ = d;}
        const DVect &   gap() const                 {return gap_; }
        void            gap(const DVect &d)         {       gap_ = d;}
        const double &  theta() const               {return theta_; }
        void            theta(const double & d)     {       theta_ = d;}
#ifdef THREED
        const double &  thetaM() const              {return thetaM_; }
        void            thetaM(const double & d)    {       thetaM_ = d;}
#else
        double thetaM() const                       {return 0.0;}
#endif
        bool    hasEnergies() const {return energies_ ? true:false;}
        double  estrain() const {return hasEnergies() ? energies_->estrain_: 0.0;}
        void    estrain(const double &d) { if(!hasEnergies()) return; energies_->estrain_=d;}
        double  eslip() const {return hasEnergies() ? energies_->eslip_: 0.0;}
        void    eslip(const double &d) { if(!hasEnergies()) return; energies_->eslip_=d;}
        uint inheritanceField() const {return inheritanceField_;}
        void inheritanceField(uint i) {inheritanceField_ = i;}
        const DVect2 & effectiveTranslationalStiffness()  const             {return effectiveTranslationalStiffness_;}
        void           effectiveTranslationalStiffness(const DVect2 &v )    {effectiveTranslationalStiffness_=v;}
        const DAVect & effectiveRotationalStiffness()  const                {return effectiveRotationalStiffness_;}
        void           effectiveRotationalStiffness(const DAVect &v )       {effectiveRotationalStiffness_=v;}
        // For contact specific plotting
        virtual void getSphereList(const IContact *con,std::vector<DVect> *pos,std::vector<double> *rad,std::vector<double> *val);
#ifdef THREED
        virtual void getDiskList(const IContact *con,std::vector<DVect> *pos,std::vector<DVect> *normal,std::vector<double> *radius,std::vector<double> *val);
#endif
        virtual void getCylinderList(const IContact *con,std::vector<DVect> *bot,std::vector<DVect> *top,std::vector<double> *radlow,std::vector<double> *radhi,std::vector<double> *val);
        /// Return the total force that the contact model holds.
        virtual DVect    getForce(const IContactMechanical *) const;
        /// Return the total moment on 1 that the contact model holds
        virtual DAVect   getMomentOn1(const IContactMechanical *) const;
        /// Return the total moment on 1 that the contact model holds
        virtual DAVect   getMomentOn2(const IContactMechanical *) const;
    private:
        static int index_;
        struct Energies {
            Energies() : estrain_(0.0), eslip_(0.0) {}
            double estrain_;  // elastic energy stored in contact 
            double eslip_;    // work dissipated by friction 
        };
        void   updateEffectiveStiffness(ContactModelMechanicalState *state);
        // inheritance fields
        quint32 inheritanceField_;
        int                     fj_nr_;             // radial number of elements >= 1 (total in 2D)
#ifdef THREED
        int                     fj_na_;             // circumferential number of elements >= 3
#endif
        int                     fj_elem_;           // Element to be queried
        double                  fj_kn_;             // normal stiffness
        double                  fj_ks_;             // shear stiffness
        double                  fj_fric_;           // Coulomb friction coefficient
        double                  fj_rmul_;           // Radius multiplier
        double                  fj_gap0_;           // Initial gap
        double                  fj_ten_;            // Tensile strength 
        double                  fj_coh_;            // Cohesive strength
        double                  fj_cohres_;         // Residual cohesive strength
        double                  fj_fa_;             // Friction angle 
        DVect                   fj_f_;              // Force carried in the model
        DAVect                  fj_m_;              // Moment carried in the model
        DAVect                  fj_m_set_;          // When initializing forces then need an extra moment term
        // Area related quantities
        double                  rmin_;              // min(Ra,Rb) where Ra & Rb are particle radii
        double                  rbar_;              // flat-joint radius [m]
        double                  atot_;              // flat-joint area [m^2]
        std::vector<double>     a_;                 // cross-sectional area of elem[fj_elem-1] [m^2]
#ifdef THREED
        std::vector<DVect2>     rBarl_;             // centroid relative position of elem[fj_elem-1] [m] (3D)
#else
        std::vector<double>     rBarl_;             // centroid relative position of elem[fj_elem-1] [m] (2D)
#endif
        int                     fj_resmode_;         // Residual mode
        void setAreaQuantities();                   // Set Rbar, Atot and A[]
        DVect getRelElemPos(const IContact*,int ) const;   // Return the relative location of element i
        void setRelElemPos(const IContact*,int ,const DVect &);   // Set the relative location of element i
        bool                    propsFixed_;        // {Rmul, N, G, bstate, mType} fixed, cannot reset
        int                     mType_;             // initial microstructural type
        int getmType() const;                       // {1,2,3,4}={bonded, gapped, slit, other}
        
        std::vector<int>        bmode_;             // bond mode - 0 unbonded, 1 failed in tension, 2 failed in shear, 3 bonded
        std::vector<bool>       smode_;             // slip mode
        bool Bonded(int e) const { return bmode_[e-1] == 3 ? true : false; }
        // Set bstate and bmode (can only bond if fj_gap0_==0.0)
        void bondElem(int iSeg,bool bBond);
        // Set bstate & bmode 
        void breakBond(int iSeg,int fmode,ContactModelMechanicalState *state);
        void slipChange(int iSeg,bool smode,ContactModelMechanicalState *state);
        // For use in 2D only!
        double tauC(const double &dSig,bool bBonded) const; // shear strength (positive) [N/m^2]
        // INTERFACE RESPONSE QUANTITIES:
        DVect                   gap_;               // total relative displacement [m]
        double                  theta_;             // total relative rotation [rad]
#ifdef THREED
        double                  thetaM_;            // total relative rotation [rad]
        double thbMag() const   { return sqrt(theta_*theta_ + thetaM_*thetaM_); }
        // unit-vector xi of middle surface system xi-eta
        // (If both thb_l and thb_m are zero, then xi is undefined
        // and returns zero for both components.)
        double xi(int comp /* component (l,m) = (1,2) */) const;
#endif
        std::vector<double>     egap_;          // gap at centroid of elem[fj_elem-1] [N]
        std::vector<DVect>      f_;             // force on elem[fj_elem-1] [N]
        void   initVectors();                   // Resize and zero all vector types based on current value of N
#ifdef TWOD
        double gap(const double &x) const;      // Gap (g>0 is open) along the interface, x in [0, 2*Rbar]
#else
        double gap(const double &rl,const double &rm) const; // Gap (g>0 is open) gap at relative position (l,m) [m]
        double sigBar( int e /* element, e = 1,2,...,Nel */ ) const; // normal stress at centroid of elem[eN-1] [N/m^2]
        double tauBar( int e /* element, e = 1,2,...,Nel */ ) const; // shear  stress at centroid of elem[eN-1] [N/m^2]
#endif
        double computeStrainEnergy(int e /* element, e = 1,2,...,Nel */) const; // strain energy in elem[eN-1]
        // For use in 2D only! Segment normal stress
        double computeSig(const double &g0,   /* gap at left end  */
                          const double &g1,   /* gap at right end */
                          const double &rbar, /* length is 2*rbar */
                          const double &dA,   /* area             */
                          bool bBonded        /* bond state       */
                          ) const;
        // For use in 2D only! Segment moment
        double computeM(const double &g0,   /* gap at left end  */ 
                        const double &g1,   /* gap at right end */ 
                        const double &rbar, /* length is 2*rbar */
                        bool bBonded        /* bond state       */
                        ) const;
        // For use in 2D only! getCase used by ComputeSig and ComputeM
        int getCase(const double &g0, /* gap at left end  */ 
                 const double &g1  /* gap at right end */ 
                 ) const;
        // Segment elastic shear-displacement increment, which is portion of
        // increment that occurs while gap is negative.
        double delUse(const double &gapStart, /* gap at start of FDlaw  */
                      const double &gapEnd,   /* gap at end of FDlaw    */
                      bool bBonded,           /* bond state             */
                      const double &delUs     /* shear displ. increment */
                     ) const;
        double      userArea_;   // Area as specified by the user 
        Energies *   energies_;    // energies
        DVect2  effectiveTranslationalStiffness_;
        DAVect  effectiveRotationalStiffness_;
        struct orientProps {
            orientProps() : origNormal_(DVect(0.0)) {}
            Quat    orient1_;
            Quat    orient2_;
            DVect   origNormal_;
        };
        orientProps *orientProps_;
    };
} // namespace itascaxd
// EoF
 | 
contactmodelflatjoint.cpp
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424  | // contactmodelflatjoint.cpp
#include "contactmodelflatjoint.h"
#include "../version.txt"
#include "fish/src/parameter.h"
#include "utility/src/tptr.h"
#include "shared/src/mathutil.h"
#include "base/src/basetoqt.h"
#include "contactmodel/src/contactmodelthermal.h"
#include "kernel/interface/iprogram.h"
#include "module/interface/icontact.h"
#include "module/interface/icontactmechanical.h"
#include "module/interface/icontactthermal.h"
#include "module/interface/ifishcalllist.h"
#include "module/interface/ipiece.h"
#include "module/interface/ipiecemechanical.h"
#ifdef FLATJOINT_LIB
#ifdef _WIN32
  int __stdcall DllMain(void *,unsigned, void *)
  {
    return 1;
  }
#endif
  extern "C" EXPORT_TAG const char *getName() 
  {
#if DIM==3
    return "contactmodelmechanical3dflatjoint";
#else
    return "contactmodelmechanical2dflatjoint";
#endif
  }
  extern "C" EXPORT_TAG unsigned getMajorVersion()
  {
    return MAJOR_VERSION;
  }
  extern "C" EXPORT_TAG unsigned getMinorVersion()
  {
    return MINOR_VERSION;
  }
  extern "C" EXPORT_TAG void *createInstance() 
  {
    cmodelsxd::ContactModelFlatJoint *m = NEWC(cmodelsxd::ContactModelFlatJoint());
    return (void *)m;
  }
#endif // FLATJOINT_LIB
namespace cmodelsxd {
    static const quint32 fjKnMask      = 0x00002; // Base 1!
    static const quint32 fjKsMask      = 0x00004;
    static const quint32 fjFricMask    = 0x00008;
    using namespace itasca;
    int ContactModelFlatJoint::index_ = -1;
    UInt ContactModelFlatJoint::getMinorVersion() const { return MINOR_VERSION;}
    ContactModelFlatJoint::ContactModelFlatJoint() : inheritanceField_(fjKnMask|fjKsMask|fjFricMask) 
                                            , fj_nr_(2)
#ifdef THREED
                                            , fj_na_(4)
#endif
                                            , fj_elem_(1)        
                                            , fj_kn_(0.0)         
                                            , fj_ks_(0.0)         
                                            , fj_fric_(0.0)       
                                            , fj_rmul_(1.0)       
                                            , fj_gap0_(0.0)        
                                            , fj_ten_(0.0)        
                                            , fj_coh_(0.0)        
                                            , fj_cohres_(0.0)        
                                            , fj_fa_(0.0)         
                                            , fj_f_(0.0)
                                            , fj_m_(0.0)
                                            , fj_m_set_(0.0)
                                            , rmin_(1.0)
                                            , rbar_(0.0)
                                            , atot_(0.0)
                                            , a_(2)
                                            , rBarl_(2)
                                            , fj_resmode_(0)
                                            , propsFixed_(false)
                                            , mType_(3)
                                            , bmode_(2)
                                            , smode_(2)
                                            , gap_(0.0)
                                            , theta_(0.0)
#ifdef THREED
                                            , thetaM_(0.0)
#endif
                                            , egap_(2)
                                            , f_(2)
                                            , userArea_(0)
                                            , energies_(0)
                                            , effectiveTranslationalStiffness_(DVect2(0.0)) 
                                            , effectiveRotationalStiffness_(DAVect(0.0))
                                            , orientProps_(0)
    {
        initVectors();
        setAreaQuantities();
        //setFromParent(ContactModelMechanicalList::instance()->find(getName()));
    }
    ContactModelFlatJoint::~ContactModelFlatJoint() {
        if (orientProps_)
            delete orientProps_;
        if (energies_)
            delete energies_;
    }
    void ContactModelFlatJoint::archive(ArchiveStream &stream) {
        stream & fj_nr_;
#ifdef THREED
        stream & fj_na_;
#endif
        stream & fj_elem_;
        stream & fj_kn_;
        stream & fj_ks_;
        stream & fj_fric_;
        stream & fj_rmul_;
        stream & fj_gap0_;
        stream & fj_ten_;
        stream & fj_coh_;
        stream & fj_fa_; 
        stream & fj_f_;  
        stream & fj_m_;  
        stream & rmin_;
        stream & rbar_;
        stream & atot_;
        stream & a_; 
        stream & rBarl_;
        stream & propsFixed_;
        stream & mType_;     
        stream & bmode_;     
        stream & smode_;
        stream & gap_;
        stream & theta_;
#ifdef THREED
        stream & thetaM_;
#endif
        stream & egap_;
        stream & f_;
        if (stream.getArchiveState()==ArchiveStream::Save) {
            bool b = false;
            if (orientProps_) {
                b = true;
                stream & b;
                stream & orientProps_->orient1_;
                stream & orientProps_->orient2_;
                stream & orientProps_->origNormal_;
            } else
                stream & b;
            b = false;
            if (energies_) {
                b = true;
                stream & b;
                stream & energies_->estrain_;
                stream & energies_->eslip_;
            } else
                stream & b;
        } else {
            bool b(false);
            stream & b;
            if (b) {
                if (!orientProps_)
                    orientProps_ = NEWC(orientProps());
                stream & orientProps_->orient1_;
                stream & orientProps_->orient2_;
                stream & orientProps_->origNormal_;
            }
            stream & b;
            if (b) {
                if (!energies_)
                    energies_ = NEWC(Energies());
                stream & energies_->estrain_;
                stream & energies_->eslip_;
            }
        }
        stream & inheritanceField_;
        stream & effectiveTranslationalStiffness_;
        stream & effectiveRotationalStiffness_;
        if (stream.getArchiveState()==ArchiveStream::Save || stream.getRestoreVersion() > 1)
            stream & userArea_;
        if (stream.getArchiveState()==ArchiveStream::Save || stream.getRestoreVersion() > 2)
            stream & fj_m_set_;
        if (stream.getArchiveState()==ArchiveStream::Save || stream.getRestoreVersion() > 3) {
            stream & fj_cohres_;
            stream & fj_resmode_;
        }
    }
    void ContactModelFlatJoint::copy(const ContactModel *cm) {
        ContactModelMechanical::copy(cm);
        const ContactModelFlatJoint *in = dynamic_cast<const ContactModelFlatJoint*>(cm);
        if (!in) throw std::runtime_error("Internal error: contact model dynamic cast failed.");
        fj_nr(in->fj_nr());
#ifdef THREED
        fj_na(in->fj_na());
#endif
        fj_elem(in->fj_elem());
        fj_kn(in->fj_kn());
        fj_ks(in->fj_ks());
        fj_fric(in->fj_fric());
        fj_rmul(in->fj_rmul());
        fj_gap0(in->fj_gap0());
        fj_ten(in->fj_ten());
        fj_coh(in->fj_coh());
        fj_cohres(in->fj_cohres());
        fj_fa(in->fj_fa());
        fj_f(in->fj_f());
        fj_m(in->fj_m());
        fj_m_set(in->fj_m_set());
        rmin(in->rmin());
        rbar(in->rbar());
        fj_resmode(in->fj_resmode());
        atot(in->atot());
        a_ = in->a_;
        rBarl_ = in->rBarl_;
        propsFixed(in->propsFixed());
        mType(in->mType());
        bmode_ = in->bmode_;
        smode_ = in->smode_;
        gap(in->gap());
        theta(in->theta());
#ifdef THREED
        thetaM(in->thetaM());
#endif
        egap_ = in->egap_;
        f_ = in->f_;
        if (in->orientProps_) {
            if (!orientProps_)
                orientProps_ = NEWC(orientProps());
            orientProps_->orient1_ = in->orientProps_->orient1_;
            orientProps_->orient2_ = in->orientProps_->orient2_;
            orientProps_->origNormal_ =  in->orientProps_->origNormal_;
        }
        if (in->hasEnergies()) {
            if (!energies_)
                energies_ = NEWC(Energies());
            estrain(in->estrain());
            eslip(in->eslip());
        }
        userArea_ = in->userArea_;
        inheritanceField(in->inheritanceField());
        effectiveTranslationalStiffness(in->effectiveTranslationalStiffness());
        effectiveRotationalStiffness(in->effectiveRotationalStiffness());
    }
    QVariant ContactModelFlatJoint::getProperty(uint i,const IContact *con) const {
        QVariant var;
        switch (i) {
        case kwFjNr     :   return fj_nr();
        case kwFjElem   :   return fj_elem();
        case kwFjKn     :   return fj_kn();
        case kwFjKs     :   return fj_ks();
        case kwFjFric   :   return fj_fric();
        case kwFjEmod   :  {
                                const IContactMechanical *c(convert_getcast<IContactMechanical>(con));
                                if (c ==nullptr) return 0.0;
                                double rsum(0.0);
                                if (c->getEnd1Curvature().y())
                                    rsum += 1.0/c->getEnd1Curvature().y();
                                if (c->getEnd2Curvature().y())
                                    rsum += 1.0/c->getEnd2Curvature().y();
                                if (userArea_) {
#ifdef THREED
                                    rsum = std::sqrt(userArea_ / dPi);
#else
                                    rsum = userArea_ / 2.0;
#endif        
                                    rsum += rsum;
                                }
                                return (fj_kn_ * rsum);
                           }
        case kwFjKRatio :  return (fj_ks_ == 0.0 ) ? 0.0 : (fj_kn_/fj_ks_);
        case kwFjRmul   :   return fj_rmul();
        case kwFjRadius :   return rbar();
        case kwFjGap0   :   return fj_gap0();
        case kwFjTen    :   return fj_ten();
        case kwFjCoh    :   return fj_coh();
        case kwFjFa     :   return fj_fa();
        case kwFjF      :   var.setValue(fj_f()); return var;
        case kwFjM      :   var.setValue(fj_m()); return var;
        case kwFjState  :   return bmode_[fj_elem()-1];
        case kwFjSlip   :   return smode_[fj_elem()-1];
        case kwFjMType  :   return getmType();
        case kwFjA      :   return a_[fj_elem()-1];
        case kwFjEgap   :   return egap_[fj_elem()-1];
        case kwFjGap    :   return gap().x();
        case kwFjNstr   :   return -f_[fj_elem()-1].x() / a_[fj_elem()-1];
        case kwFjSstr   :   return f_[fj_elem()-1].y() / a_[fj_elem()-1];
        case kwFjSs     :   return tauC((-f_[fj_elem()-1].x() / a_[fj_elem()-1]),(bmode_[fj_elem()-1]==3));
        case kwFjRelBr  :   var.setValue(DVect2(theta(),thetaM())); return var;
        case kwFjCen    :   var.setValue(getRelElemPos(con,fj_elem()-1)); return var;
#ifdef THREED
        case kwFjNa     :   return fj_na();
#endif
        case kwFjTrack  :   var.setValue(orientProps_ ? true : false); return var;
        case kwUserArea :   return userArea_;
        case kwFjCohRes :   return fj_cohres();
        case kwFjResMode:   return fj_resmode();
        }
        assert(0);
        return QVariant();
    }
    bool ContactModelFlatJoint::getPropertyGlobal(uint i) const {
        switch (i) {
        case kwFjF:   
            return false;
        }
        return true;
    }
    bool ContactModelFlatJoint::setProperty(uint i,const QVariant &v,IContact *c) {
        bool ok(true);
        switch (i) {
        case kwFjNr: {
                if (!propsFixed()) {
                    int val(v.toInt(&ok));
                    if (!ok || val < 1)
                        throw Exception("fj_nr must be an integer greater than 0.");
                    fj_nr(val);
                    if (fj_elem() > fj_n())
                        fj_elem(fj_n());
                    initVectors();
                    setAreaQuantities();
                } else
                    throw Exception("fj_nr cannot be modified.");
                return true;
            }
        case kwFjElem: {  
               int val(v.toInt(&ok));
               if (!ok || val < 1 || val > fj_n())
                   throw Exception("fj_elem must be an integer between 1 and %1.",fj_n());
               fj_elem(val);
               return false;
           }
        case kwFjKn: {
                double val(v.toDouble(&ok));
                if (!ok || val<0.0)
                    throw Exception("fj_kn must be a positive double.");
                fj_kn(val);
                return true;
            }
        case kwFjKs: {
                double val(v.toDouble(&ok));
                if (!ok || val<0.0)
                    throw Exception("fj_ks must be a positive double.");
                fj_ks(val);  
                return true;
            }
        case kwFjFric: {
                double val(v.toDouble(&ok));
                if (!ok || val<0.0)
                    throw Exception("fj_fric must be a positive double.");
                fj_fric(val);  
                return false;
            }
        case kwFjRmul: {
                if (!propsFixed()) {
                    double val(v.toDouble(&ok));
                    if (!ok || val<0.01)
                        throw Exception("fj_rmul must be a double greater than or equal to 0.01.");
                    fj_rmul(val);
                    setAreaQuantities();
                    return true;
                } else
                    throw Exception("fj_rmul cannot be modified.");
                return false;
            }
        case kwFjGap0: {
                if (!propsFixed()) {
                    double val(v.toDouble(&ok));
                    if (!ok || val<0.0)
                        throw Exception("fj_gap0 must be a positive double.");
                    fj_gap0(val);
                    if (fj_gap0() > 0.0) {
                        for(int i=1; i<=fj_n(); ++i) 
                            bondElem(i,false);
                        // surfaces are parallel w/ gap G
                        DVect temp(0.0);
                        temp.rx() = fj_gap0();
                        gap(temp);
                        theta(0.0);
                    }
                } else
                    throw Exception("fj_gap0 cannot be modified.");
                return true;
            }
        case kwFjTen: {
                double val(v.toDouble(&ok));
                if (!ok || val<0.0)
                    throw Exception("fj_ten must be a positive double.");
                fj_ten(val); 
                return false;
            }
        case kwFjFa: {
                double val(v.toDouble(&ok));
                if (!ok || val<0.0)
                    throw Exception("fj_fa must be a positive double.");
                fj_fa(val); 
                return false;
            }
        case kwFjCoh: {
                double val(v.toDouble(&ok));
                if (!ok || val<0.0)
                    throw Exception("fj_coh must be a positive double.");
                fj_coh(val); 
                return false;
            }
        case kwFjA: {
                double val(v.toDouble(&ok));
                if (!ok || val<0.0)
                    throw Exception("fj_area must be a positive double.");
                a_[fj_elem()-1] = val; 
                return false;
            }
        case kwFjNstr: {
                double val(v.toDouble(&ok));
                if (!ok || val<0.0)
                    throw Exception("fj_sigma must be a positive double.");
                f_[fj_elem()-1].rx() = -val * a_[fj_elem()-1];
                return false;
            }
        case kwFjSstr: {
                double val(v.toDouble(&ok));
                if (!ok || val<0.0)
                    throw Exception("fj_tau must be a positive double.");
                f_[fj_elem()-1].ry() = val * a_[fj_elem()-1];
                return false;
            }
#ifdef THREED
        case kwFjNa: {
                if (!propsFixed()) {
                    int val(v.toInt(&ok));
                    if (!ok || val < 1)
                        throw Exception("fj_na must be an integer greater than 0.");
                    fj_na(val);
                    if (fj_elem() > fj_n())
                        fj_elem(fj_n());
                    initVectors();
                    setAreaQuantities();
                } else
                    throw Exception("fj_na cannot be modified.");
                return true;
            }
#endif
        case kwFjCen: {
                if (!v.canConvert<DVect>())
                    throw Exception("fj_cen cannot be modified.");
                DVect val(v.value<DVect>());
                int el = fj_elem()-1;
                setRelElemPos(c,el,val);
                return false;
            }
        case kwFjTrack: {
                if (!v.canConvert<bool>())
                    throw Exception("fj_track must be a boolean.");
                bool b = v.toBool();
                if (b) {
                    if (!orientProps_)
                        orientProps_ = NEWC(orientProps());
                } else {
                    if (orientProps_) {
                        delete orientProps_;
                        orientProps_ = 0;
                    }
                }
                return true;
            }
        case kwUserArea: {
                if (!v.canConvert<double>())
                    throw Exception("user_area must be a double.");
                double val(v.toDouble());
                if (val < 0.0)
                    throw Exception("Negative user_area not allowed.");
                userArea_ = val;
                propsFixed_ = false;
                return true;
            }
        case kwFjCohRes: {
                double val(v.toDouble(&ok));
                if (!ok || val<0.0)
                    throw Exception("fj_cohres must be a positive double.");
                fj_cohres(val); 
                return false;
            }
        case kwFjResMode: {
                int val(v.toInt(&ok));
                if (!ok || (val != 0 && val != 1))
                    throw Exception("fj_resmode must be 0 or 1.");
                fj_resmode(val); 
                return false;
            }
        }
        return false;
    }
    bool ContactModelFlatJoint::getPropertyReadOnly(uint i) const {
        switch (i) {
        case kwFjF:
        case kwFjM:
        case kwFjGap:
        case kwFjRelBr:
        case kwFjState:
        case kwFjSlip:
        case kwFjEgap:
        case kwFjNstr:
        case kwFjSstr:
        case kwFjSs:
        case kwFjRadius:
            return true;
        default:
            break;
        }
        return false;
    }
    QString  ContactModelFlatJoint::getMethodArguments(uint i) const {
        switch (i) {
        case kwBond:
        case kwUnbond:
            return "gap,element";
        case KwDeformability:
            return "emod,kratio";
        case kwInitialize:
            return "force,moment";
        }
        return QString();
    }
    bool ContactModelFlatJoint::setMethod(uint i,const QVector<QVariant> &vl,IContact *con) {
        IContactMechanical *c(convert_getcast<IContactMechanical>(con));
        bool bond(false);
        switch (i) {
        case kwBond:
            bond = true;
        case kwUnbond: {
                int seg(0);
                double mingap = -1.0 * limits<double>::max();
                double maxgap = 0;
                if (vl.size()==2) {
                    // The first is the gap
                    QVariant arg = vl.at(0);
                    if (!arg.isNull()) {
                        if (arg.canConvert<Double>()) 
                            maxgap = vl.at(0).toDouble();
                        else if (arg.canConvert<DVect2>()) {
                            DVect2 value = vl.at(0).value<DVect2>();
                            mingap = value.minComp();
                            maxgap = value.maxComp();
                        } else
                            throw Exception("Argument %1 not recognized in method %2 in contact model %3.",vl.at(0),bond ? "bond":"unbond",getName());
                    }
                    arg = vl.at(1);
                    if (!arg.isNull()) {
                        seg = vl.at(1).toUInt();
                        if (seg < 1)
                            throw Exception("Element indices start at 1 in method %1 in contact model %2.",bond ? "bond":"unbond",getName());
                        if (seg > fj_n())
                            throw Exception("Element index %1 exceeds segments number (%2) in method %3 in contact model %4.",seg,fj_n(),bond ? "bond":"unbond",getName());
                    }
                }
                double gap = c->getGap(); 
                if (gap >= mingap && gap <= maxgap) {
                    if (!seg) { 
                        for(int iSeg=1; iSeg<=fj_n(); ++iSeg) 
                            bondElem(iSeg,bond);
                    } else {
                        bondElem(seg,bond);
                    }
                    // If have installed bonds and tracking is enabled then set the contact normal appropriately
                    if (orientProps_) {
                        orientProps_->orient1_ = Quat::identity();
                        orientProps_->orient2_ = Quat::identity();
                        orientProps_->origNormal_ = toVect(con->getNormal());
                    }
                }
                return true;
             }
        case KwDeformability:
            {
                double emod;
                double krat;
                if (vl.at(0).isNull()) 
                    throw Exception("Argument emod must be specified with method deformability in contact model %1.",getName());
                emod = vl.at(0).toDouble();
                if (emod<0.0)
                    throw Exception("Negative emod not allowed in contact model %1.",getName());
                if (vl.at(1).isNull()) 
                    throw Exception("Argument kratio must be specified with method deformability in contact model %1.",getName());
                krat = vl.at(1).toDouble();
                if (krat<0.0)
                    throw Exception("Negative stiffness ratio not allowed in contact model %1.",getName());
                double rsum(0.0);
                if (c->getEnd1Curvature().y())
                    rsum += 1.0/c->getEnd1Curvature().y();
                if (c->getEnd2Curvature().y())
                    rsum += 1.0/c->getEnd2Curvature().y();
                if (userArea_) {
#ifdef THREED
                    rsum = std::sqrt(userArea_ / dPi);
#else
                    rsum = userArea_ / 2.0;
#endif        
                    rsum += rsum;
                }
                fj_kn_ = emod / rsum;
                fj_ks_ = (krat == 0.0) ? 0.0 : fj_kn_ / krat;
                return true;
            }
        case KwUpdateGeom: {
                // go through and update the total area (atot) and the 
                // radius rbar
                double at = 0.0;
                for (int i=1; i<=fj_n(); ++i)
                    at += a_[i-1];
                atot(at);
                //get the equivalent radius
#ifdef THREED
                rbar(sqrt(at/dPi));
#else   
                rbar(at/2.0);
#endif
                return true;
            }
        case kwArea: {
                if (!userArea_) {
                    double rsq(1./std::max(c->getEnd1Curvature().y(),c->getEnd2Curvature().y()));
#ifdef THREED
                    userArea_ = rsq * rsq * dPi;
#else
                    userArea_ = rsq * 2.0;
#endif                            
                }
                return true;
            }
        case kwInitialize: {
                DVect force;
                DAVect moment;
                if (vl.at(0).isNull()) 
                    throw Exception("Argument force must be specified with method initialize in contact model %1.",getName());
                force = vl.at(0).value<DVect>();
                if (vl.at(1).isNull()) 
                    throw Exception("Argument moment must be specified with method initialize in contact model %1.",getName());
#ifdef THREED
                moment = vl.at(1).value<DVect>();
#else
                moment.rz() = vl.at(1).toDouble();
#endif
                // Set the gap accordingly to get the correct force
                setForce(force,con);
                fj_m_set(moment);
                return true;
            }
        }
        return false;
    }
    double ContactModelFlatJoint::getEnergy(uint i) const {
        double ret(0.0);
        if (!energies_)
            return ret;
        switch (i) {
        case kwEStrain:  return energies_->estrain_;
        case kwESlip:    return energies_->eslip_;
        }
        assert(0);
        return ret;
    }
    bool ContactModelFlatJoint::getEnergyAccumulate(uint i) const {
        switch (i) {
        case kwEStrain:  return false;
        case kwESlip:    return true;
        }
        assert(0);
        return false;
    }
    void ContactModelFlatJoint::setEnergy(uint i,const double &d) {
        if (!energies_) return;
        switch (i) {
        case kwEStrain:  energies_->estrain_ = d; return;  
        case kwESlip:    energies_->eslip_   = d; return;
        }
        assert(0);
        return;
    }
    bool ContactModelFlatJoint::validate(ContactModelMechanicalState *state,const double &) {
        assert(state);
        const IContactMechanical *c = state->getMechanicalContact(); 
        assert(c);
        // This presumes that one of the ends has a non-zero curvature
        rmin(1.0/std::max(c->getEnd1Curvature().y(),c->getEnd2Curvature().y()));
        if (userArea_) {
#ifdef THREED
            rmin(std::sqrt(userArea_ / dPi));
#else
            rmin(userArea_ / 2.0);
#endif        
        }
        if (!propsFixed()) {
            setAreaQuantities();                    
            mType(getmType());
        }
        
        // Initialize the tracking if not initialized
        if (orientProps_ && orientProps_->origNormal_ == DVect(0.0)) {
            orientProps_->origNormal_ = toVect(c->getContact()->getNormal());
            orientProps_->orient1_ = Quat::identity();
            orientProps_->orient2_ = Quat::identity();
        }
        if (state->trackEnergy_)
            activateEnergy();
        updateEffectiveStiffness(state);
        return checkActivity(state->gap_);
    }
    void ContactModelFlatJoint::updateEffectiveStiffness(ContactModelMechanicalState *) {
        DVect2 ret(fj_kn_,fj_ks_);
        ret *= atot();
        effectiveTranslationalStiffness(ret);
#ifdef TWOD
        effectiveRotationalStiffness(DAVect(fj_kn() * (2.0/3.0)*rbar()*rbar()*rbar()));
#else
        double piR4 = dPi * rbar() * rbar() * rbar() * rbar();
        double t = fj_kn() * 0.25 * piR4;
        effectiveRotationalStiffness(DAVect(fj_ks() * 0.50 * piR4,t,t)); 
#endif
    }
     
    bool ContactModelFlatJoint::forceDisplacementLaw(ContactModelMechanicalState *state,const double ×tep) {
        if (!propsFixed())
            propsFixed(true);
        timestep;
        assert(state);
        if (state->activated()) {
            if (cmEvents_[fActivated] >= 0) {
                auto c = state->getContact();
                std::vector<fish::Parameter> arg = { fish::Parameter(c->getIThing()) };
                IFishCallList *fi = const_cast<IFishCallList*>(state->getProgram()->findInterface<IFishCallList>());
                fi->setCMFishCallArguments(c,arg,cmEvents_[fActivated]);
            }
        }
        // Update the orientations
        if (orientProps_) {
            orientProps_->orient1_.increment(state->getMechanicalContact()->getEnd1Mechanical()->getAngVelocity()*timestep);
            orientProps_->orient2_.increment(state->getMechanicalContact()->getEnd2Mechanical()->getAngVelocity()*timestep);
        }
#ifdef TWOD
        // Translational increment in local coordinates
        DVect del_U = state->relativeTranslationalIncrement_;
        double del_theta  = state->relativeAngularIncrement_.z();
        gap(gap() + del_U); // in normal and shear direction in 2D
        theta(theta() + del_theta);
        double dSig, dTau;
        double delX = 2*rbar() / fj_n();
        double rbar2 = rbar() / fj_n();
        DVect dFSum(0.0);
        double dMSum = 0.0;
        if (state->trackEnergy_) {
            assert(energies_);
            energies_->estrain_ =  0.0;
        }
        bool oneBonded = false;
        for(int i=0; i<fj_n(); ++i) {
            double g0 = gap((i  )*delX);
            double g1 = gap((i+1)*delX);
            double gMid = 0.5*(g0 + g1);
            if (bmode_[i] != 3 && gMid > 0) {
                egap_[i] = gMid;
                f_[i] = DVect(0.0);
                continue;
            }
            dSig = computeSig(g0,g1,rbar2,a_[i],(bmode_[i]==3));
            bool tensileBreak = false;
            if (bmode_[i]==3) {
                if (state->canFail_ && dSig >= fj_ten()) {
                    breakBond(i+1,1,state);
                    dSig = dTau = 0.0;
                    tensileBreak = true;
                }
            }
            if (!tensileBreak) {
                dTau = f_[i].y() / a_[i];
                double dUse = delUse(egap_[i],gMid,(bmode_[i]==3),del_U.y());
                double dtauP = dTau - fj_ks()*dUse;
                double dtauPabs = abs(dtauP);
                if (bmode_[i]==3) { // bonded
                    if (dtauPabs < tauC(dSig,true)) 
                        dTau = dtauP;         
                    else { 
                        if (state->canFail_) {
                            breakBond(i+1,2,state);
                            if (fj_resmode() == 0)
                                dSig = dTau = 0.0;     
                            else 
                                dTau = fj_cohres() - dSig * fj_fric();
                        }
                    }
                } else {             // unbonded
                    double dtauC = tauC(dSig,false);
                    if (dtauPabs <= dtauC) {
                        dTau = dtauP;    
                        slipChange(i+1,false,state);
                    } else {
                        dTau = dtauP * ( dtauC / dtauPabs );
                        slipChange(i+1,true,state);
                        if (state->trackEnergy_) { energies_->eslip_ += dtauC*a_[i]*abs(dUse);}
                    }
                }
            }
            oneBonded = true;
            egap_[i] = gMid;
            f_[i] = DVect(-dSig*a_[i],dTau*a_[i]);
            dFSum += f_[i];
            double m = computeM(g0,g1,rbar2,(bmode_[i]==3)) + fj_m_set().z()/fj_n();
            dMSum  += m - rBarl_[i]*f_[i].x();
            if (state->trackEnergy_) {
                if (fj_kn_) {
                    double ie = 2.0*rBarl_[i]*rBarl_[i]*rBarl_[i] / 3.0;
                    energies_->estrain_ += 0.5*(dSig*dSig*a_[i] + m*m/ie) / fj_kn_;
                }
                if (fj_ks_) {
                    energies_->estrain_ += 0.5 * dTau*dTau*a_[i] / fj_ks_;
                }
            }
        }
        //
        fj_f(dFSum);
        fj_m(DAVect(dMSum));
        if (!oneBonded)
            fj_m_set(DAVect(0.0));
#else
        CAxes localSys = state->getMechanicalContact()->getContact()->getLocalSystem();
        DVect trans = state->relativeTranslationalIncrement_; // translation increment in local coordinates
        DAVect ang = state->relativeAngularIncrement_; // rotational increment in local coordinates
        DVect shear(0.0,trans.y(),trans.z());
        DVect del_Us = localSys.toGlobal(shear); // In global coordinates 
        // What is the twist in global coordinates?
        DVect del_Theta_t = localSys.e1()*ang.x();
        theta_ += ang.y();
        thetaM_ += ang.z();
        gap(gap() + trans);
        if (state->trackEnergy_) {
            assert(energies_);
            energies_->estrain_ =  0.0;
        }
        DVect force(0.0);
        DAVect mom(0.0);
        bool oneBonded = false;
        for (int e=1,i=0; e<=fj_n(); ++e, ++i) {  
            double gBar1 = gap( rBarl_[i].x(),rBarl_[i].y());
            if (!Bonded(e) && gBar1 > 0) {
                egap_[i] = gBar1;
                f_[i] = DVect(0.0);
                continue;
            }
            DVect r = localSys.e2()*rBarl_[i].x() + localSys.e3()*rBarl_[i].y(); // location of element point
            double sigBar_e = sigBar(e);
            f_[i].rx() = -sigBar_e * a_[i]; // Step 1...
            if (Bonded(e) && (sigBar_e >= fj_ten())) { // break bond in tension
                if (state->canFail_) { 
                    breakBond(e,1,state);
                    f_[i] = DVect(0.0);
                }
            } else {
                DVect del_us  = del_Us + (del_Theta_t & r); // In global - has the twist in there
                double  del_usl = delUse(egap_[i],gBar1,Bonded(e),(del_us | localSys.e2()));
                double  del_usm = delUse(egap_[i],gBar1,Bonded(e),(del_us | localSys.e3()));
                double Fs_lP = f_[i].y() - fj_ks() * a_[i] * del_usl;
                double Fs_mP = f_[i].z() - fj_ks() * a_[i] * del_usm;
                double FsPMag = sqrt( Fs_lP*Fs_lP + Fs_mP*Fs_mP );
                double tauBarP = FsPMag / a_[i];
                if ( !Bonded(e) ) {
                    double tau_c = sigBar_e < 0.0 ? fj_cohres()-fj_fric()*sigBar_e : 0.0;
                    if ( tauBarP <= tau_c ) {
                        f_[i].ry() = Fs_lP;
                        f_[i].rz() = Fs_mP;
                        slipChange(e,false,state);
                    } else { // enforce sliding
                        double sFac = tau_c * a_[i] / FsPMag;
                        f_[i].ry() = Fs_lP * sFac;
                        f_[i].rz() = Fs_mP * sFac;
                        slipChange(e,true,state);
                        if (state->trackEnergy_) { energies_->eslip_ += tau_c*a_[i]*sqrt(del_usl*del_usl+del_usm*del_usm);}
                    }
                } else { // Bonded(e)
                    double tau_c = fj_coh() - sigBar_e * tan(dDegrad*fj_fa());
                    if ( tauBarP <= tau_c ) {
                        f_[i].ry() = Fs_lP;
                        f_[i].rz() = Fs_mP;
                    } else { // break bond in shear
                        if (state->canFail_) {
                            breakBond(e,2,state);
                            if (fj_resmode() == 0)
                                f_[i] = DVect(0.0);
                            else {
                                double newForce = fj_cohres() - sigBar_e * fj_fric();
                                if (!userArea_)
                                    newForce *= a_[i];
                                else
                                    newForce *= userArea_ / fj_n();
                                newForce /= std::sqrt(f_[i].y()*f_[i].y() + f_[i].z()*f_[i].z());
                                f_[i].ry() *= newForce;
                                f_[i].rz() *= newForce;
                            }
                        }
                    }
                }
            }
            oneBonded = true;
            force += f_[i];
            mom += localSys.toLocal(r) & f_[i] + fj_m_set()/fj_n();
            egap_[i] = gBar1;
            if (state->trackEnergy_) {
                energies_->estrain_ += computeStrainEnergy(e);
            }
        }
        fj_f(force);
        fj_m(mom);
        if (!oneBonded)
            fj_m_set(DAVect(0.0));
#endif
        assert(fj_f_ == fj_f_);
        return checkActivity(0.0);
    }
    
    bool ContactModelFlatJoint::thermalCoupling(ContactModelMechanicalState*, ContactModelThermalState* ts, IContactThermal*, const double&) {
        // Account for thermal expansion in incremental mode
        if (ts->gapInc_ == 0.0) return false;
        DVect dg(0.0);
        dg.rx() = ts->gapInc_;
        gap(gap() + dg);
        return true;
    }
    void ContactModelFlatJoint::setAreaQuantities() {
        rbar(fj_rmul() * rmin());
#ifdef TWOD
        atot(2.0 * rbar());
        double v = atot()/fj_n();
        for (int i=1; i<=fj_n(); ++i) {
            a_[i-1] = v;
            rBarl_[i-1] = rbar() * (double(-2*i + 1 + fj_n()) / fj_n());
        }
#else
        atot(dPi * rbar() * rbar());
        double del_r  = rbar() / fj_nr();
        double del_al = 2.0*dPi / fj_na();
        double fac = 2.0/3.0;
        for (int i=0; i < fj_n(); ++i) {
            double dVal = i / fj_na();
            int I = (int)floor( dVal );
            int J = i - I*fj_na();
            double r1  =  I      * del_r;
            double r2  = (I + 1) * del_r;
            double al1 =  J      * del_al;
            double al2 = (J + 1) * del_al;
            a_[i] = 0.5 * (al2 - al1) * (r2*r2 - r1*r1);
            rBarl_[i] = DVect2(((sin(al2) - sin(al1)) / (al2 - al1))*((r2*r2*r2 - r1*r1*r1)/(r2*r2 - r1*r1)),
                               ((cos(al1) - cos(al2)) / (al2 - al1))*((r2*r2*r2 - r1*r1*r1)/(r2*r2 - r1*r1)))*fac;
        }
#endif
        updateEffectiveStiffness(0);
    }
    DVect ContactModelFlatJoint::getRelElemPos(const IContact* c,int i) const {
        DVect ret(0.0);
        if (c) {
            ret = c->getPosition();
            CAxes localSys = c->getLocalSystem();
#ifdef TWOD
            ret += localSys.e2()*rBarl_[i];
#else
            ret += localSys.e2()*rBarl_[i].x() + localSys.e3()*rBarl_[i].y();
#endif
        }
        return ret;
    }
    void ContactModelFlatJoint::setRelElemPos(const IContact* c,int i,const DVect &pos) {
        // pos is a position in space in global coordinates
        propsFixed(true);
        if (c) {
            // project onto the plane
            DVect cp = c->getPosition();
            DVect norm = toVect(c->getNormal());
            double sd = norm|(cp - pos);
            // np is the point on the plane 
            DVect np = pos+norm*sd;
            np = np-cp;
            CAxes localSys = c->getLocalSystem();
            np = localSys.toLocal(np);
#ifdef TWOD
            rBarl_[i] = np.y();
#else
            rBarl_[i] = DVect2(np.y(),np.z());
#endif
        }
    }
    int ContactModelFlatJoint::getmType() const {
        if (propsFixed()) return mType();
        //  
        if (fj_gap0() > 0.0)   return 2;
        //
        // If we get to here, then G == 0.0.
        bool AllBonded = true;
        bool AllSlit = true;
        for(int i=0; i<fj_n(); ++i) {
            if (bmode_[i] != 3) AllBonded = false;
            else AllSlit = false;
        }
        if (AllBonded) return 1;
        if (AllSlit)   return 3;
        //
        return 4;
    }
    void ContactModelFlatJoint::bondElem(int iSeg,bool bBond ) {
        if (bBond) {
            if (fj_gap0() == 0.0) {
                bmode_[iSeg-1]  = 3;
            } else
                bmode_[iSeg-1] = 0;
        } else 
            bmode_[iSeg-1] = 0;
    }
    void ContactModelFlatJoint::breakBond(int iSeg,int fmode,ContactModelMechanicalState *state) {
        bmode_[iSeg-1]  = fmode;
        if (cmEvents_[fBondBreak] >= 0) {
            auto c = state->getContact();
            std::vector<fish::Parameter> arg = { fish::Parameter(c->getIThing()),
                                                 fish::Parameter((qint64)iSeg),
                                                 fish::Parameter((qint64)fmode),
                                                 fish::Parameter(computeStrainEnergy(iSeg)) 
                                               };
            IFishCallList *fi = const_cast<IFishCallList*>(state->getProgram()->findInterface<IFishCallList>());
            fi->setCMFishCallArguments(c,arg,cmEvents_[fBondBreak]);
        }
        if (!isBonded() && cmEvents_[fBroken] >= 0) {
            auto c = state->getContact();
            std::vector<fish::Parameter> arg = { fish::Parameter(c->getIThing()) };
            IFishCallList *fi = const_cast<IFishCallList*>(state->getProgram()->findInterface<IFishCallList>());
            fi->setCMFishCallArguments(c,arg,cmEvents_[fBroken]);
        }
    }
    void ContactModelFlatJoint::slipChange(int iSeg,bool smode,ContactModelMechanicalState *state) {
        bool emitEvent = false;
        if (smode) {
            if (!smode_[iSeg-1]) {
                emitEvent = true;
                smode_[iSeg-1] = smode;
            }
        } else {
            if (smode_[iSeg-1]) {
                emitEvent = true;
                smode_[iSeg-1] = smode;
            }
        }
        if (emitEvent && cmEvents_[fSlipChange] >= 0) {
            auto c = state->getContact();
            std::vector<fish::Parameter> arg = { fish::Parameter(c->getIThing()),
                                                 fish::Parameter((qint64)iSeg),
                                                 fish::Parameter(smode) };
            IFishCallList *fi = const_cast<IFishCallList*>(state->getProgram()->findInterface<IFishCallList>());
            fi->setCMFishCallArguments(c,arg,cmEvents_[fSlipChange]);
        }
    }
    double ContactModelFlatJoint::tauC(const double &dSig,bool bBonded) const {
        if (bBonded) return (fj_coh() + (tan(dDegrad*fj_fa()) * (-dSig)) );
        else 
            return (dSig < 0.0 ? fj_cohres() - fj_fric() * dSig : 0.0 );
    }
#ifdef THREED
    double ContactModelFlatJoint::xi(int comp) const {
        if (comp == 1) return abs(theta_) <= 1e-12 ? 0.0 : theta_/thbMag();
        else           return abs(thetaM_) <= 1e-12 ? 0.0 : thetaM_/thbMag();
    }
#endif
    void ContactModelFlatJoint::initVectors() {
        a_.resize(fj_n());
        rBarl_.resize(fj_n());
        bmode_.resize(fj_n());
        smode_.resize(fj_n());
        egap_.resize(fj_n());
        f_.resize(fj_n());
        for (int i=0; i<fj_n(); ++i) {
            a_[i] = egap_[i] = 0.0;
#ifdef THREED
            rBarl_[i] = DVect2(0.0);
#else
            rBarl_[i] = 0.0;
#endif
            f_[i] = DVect(0.0);
            bmode_[i] = 0;
            smode_[i] = false;
        }
    }
#ifdef TWOD
    double ContactModelFlatJoint::gap(const double &x) const {
        return gap().x() + theta()*(x - rbar());
    }
#else
    double ContactModelFlatJoint::gap(const double &r_l,const double &r_m ) const {
       return gap().x() + ( r_m*xi(1) - r_l*xi(2) ) * thbMag();
    }
    double ContactModelFlatJoint::sigBar(int e) const {
        if (!Bonded(e)&& gap(rBarl_[e-1].x(),rBarl_[e-1].y()) >= 0.0)
            return 0.0;
        else
            return fj_kn() * gap(rBarl_[e-1].x(),rBarl_[e-1].y());
    }
    double ContactModelFlatJoint::tauBar(int e) const {
        return a_[e-1] <= 1e-12 ?
        0.0 : sqrt(f_[e-1].y()*f_[e-1].y() + f_[e-1].z()*f_[e-1].z())/a_[e-1] ;
    }
#endif
    double ContactModelFlatJoint::computeStrainEnergy(int e) const {
        double ret(0.0);
        int i = e - 1;
#ifdef TWOD
        double delX = 2 * rbar() / fj_n();
        double g0 = gap((i)*delX);
        double g1 = gap((i + 1)*delX);
        double rbar2 = rbar() / fj_n();
        double dSig = computeSig(g0, g1, rbar2, a_[i], (bmode_[i] == 3));
        double m = computeM(g0, g1, rbar2, (bmode_[i] == 3));
        double dTau = f_[i].y() / a_[i]; // only valid before failure
        if (fj_kn_) {
            double ie = 2.0*rBarl_[i] * rBarl_[i] * rBarl_[i] / 3.0;
            ret += 0.5*(dSig*dSig*a_[i] + m * m / ie) / fj_kn_;
        }
        if (fj_ks_) {
            ret += 0.5 * dTau*dTau*a_[i] / fj_ks_;
        }
#else
        if (fj_kn_) {
            ret += 0.5*(sigBar(e)*sigBar(e)*a_[i]) / fj_kn_;
        }
        if (fj_ks_) {
            ret += 0.5 * (f_[i].y()*f_[i].y() + f_[i].z()*f_[i].z()) / (fj_ks_*a_[i]);
        }
#endif
        return ret;
    }
    double ContactModelFlatJoint::computeSig(const double &g0,const double &g1,const double &rbar,
                                             const double &dA,bool bBonded ) const {
        double gTerm;
        switch (getCase(g0, g1)) {
            case 1:
                if (bBonded)       gTerm =  (g0 + g1);            
                else if (g0 < 0.0) gTerm = -( g0*g0 / (g1 - g0) );
                else               gTerm =  ( g1*g1 / (g1 - g0) );
                break;
            case 2:
                if (bBonded) gTerm = (g0 + g1); 
                else         gTerm = 0.0;       
                break;
            case 3:
                gTerm = (g0 + g1);
                break;
        }
        return (fj_kn() * gTerm * rbar) / dA;
    }
    double ContactModelFlatJoint::computeM(const double &g0,const double &g1,const double &rbar,
                                           bool bBonded) const {
        double gTerm;
        switch (getCase(g0,g1)) {
            case 1:
                if (bBonded)       gTerm = -((g1 - g0) / 3.0);                                   
                else if (g0 < 0.0) gTerm = g0*g0*(g0 - 3.0*g1) / (3.0*(g1-g0)*(g1-g0));          
                else               gTerm = -(((g1-g0)*(g1-g0)*(g1-g0) + g0*g0*(g0 - 3.0*g1))
                                            / (3.0*(g1-g0)*(g1-g0)));                                                   
            break;
          case 2:
                if (bBonded) gTerm = -((g1 - g0) / 3.0); 
                else         gTerm = 0.0;       
                break;
          case 3:
                gTerm = -((g1 - g0) / 3.0);
                break;
        }
        return fj_kn() * gTerm * rbar*rbar;
    }
    int ContactModelFlatJoint::getCase(const double &g0,const double &g1) const {
        if (g0 * g1 < 0.0) // Case 1: gap changes sign       
            return 1; 
        else if (g0 >= 0.0 && g1 >= 0.0) // Case 2: gap remains positive or zero
            return 2; 
        else // Case 3: gap remains negative
            return 3;  
    }
    double ContactModelFlatJoint::delUse(const double &gapStart,const double &gapEnd,bool bBonded,
                                         const double &delUs) const {
        if ( bBonded ) return delUs;
        if ( gapStart <= 0.0 ) {
            if ( gapEnd <= 0.0 )
                return delUs;
            else { // gapEnd > 0.0
                double xi = -gapStart / (gapEnd - gapStart);
                return delUs * xi;
            }
        } else { // gapStart > 0.0
            if ( gapEnd >= 0.0 )
                return 0.0;
            else { // gapEnd < 0.0
                double xi = -gapStart / (gapEnd - gapStart);
                return delUs * (1.0 - xi);
            }
        }
    }
    
    bool ContactModelFlatJoint::checkActivity(const double &inGap) {
        // If any subcontact is bonded return true
        FOR(it,bmode_) if ((*it) == 3) 
            return true; 
        // If the normal gap is less than 2*rbar return true
        if (gap().x() < 2.0*rbar())
            return true;
        // check to see if there is overlap (based on the initial gap) to reset activity if the contact has been previously deactivated 
        if (inGap < 0) {
            // reset the relative rotation
            theta(0.0);    
#ifdef THREED
            thetaM(0.0);
#endif
            // set the gap to be the current gap, removing the shear displacement
            DVect inp(inGap,0.0);
            gap(inp);
            return true;
        }
        return false;
    }
    void ContactModelFlatJoint::setForce(const DVect &v,IContact *) {
        fj_f_ = v;
        DVect df = v / f_.size();
        for (int i=0; i<f_.size(); ++i)
            f_[i] = df;
        // Set gap consistent with normal force
        double at = userArea_;
        if (!userArea_) {
            for (int i = 1; i <= fj_n(); ++i)
                at += a_[i - 1];
        } 
        gap_.rx() = -1.0 * v.x() / (fj_kn_ * at);
    }
    void ContactModelFlatJoint::getSphereList(const IContact *con,std::vector<DVect> *pos,std::vector<double> *rad,std::vector<double> *val) {
        assert(pos);
        assert(rad);
        assert(val);
        if (!orientProps_)
            return;
        // find minimal radii for end1
        double br = convert_getcast<IContactMechanical>(con)->getEnd1Curvature().y();
        if (br) {
            const IPiece *p = con->getEnd1();
            FArray<const IContact*> arr;
            p->getContactList(&arr);
            double maxgap = 0.0;
            FOR(ic,arr) {
                const IContactMechanical *mc = convert_getcast<IContactMechanical>(*ic);
                const IContactModelMechanical *mcm = mc->getModelMechanical();
                if (mcm->getContactModel()->getIndex() == ContactModelFlatJoint::getIndex()) {
                    const ContactModelFlatJoint *in = dynamic_cast<const ContactModelFlatJoint*>(mcm);
                    maxgap = std::max<double>(maxgap,in->gap().x()- mc->getGap());
                }
            }
            br = 1.0 / br - 0.5*maxgap;
            const IContactMechanical *mc = convert_getcast<IContactMechanical>(con);
            pos->push_back(convert_getcast<IPieceMechanical>(mc->getEnd1())->getPosition());
            rad->push_back(br);
            val->push_back(mc->getEnd1()->getIThing()->getID());
        }
        // Give the end2 sphere - bummer
        br = convert_getcast<IContactMechanical>(con)->getEnd2Curvature().y();
        if (br) {
            const IPiece *p = con->getEnd2();
            FArray<const IContact*> arr;
            p->getContactList(&arr);
            double maxgap = 0.0;
            FOR(ic,arr) {
                const IContactMechanical *mc = convert_getcast<IContactMechanical>(*ic);
                const IContactModelMechanical *mcm = mc->getModelMechanical();
                if (mcm->getContactModel()->getIndex() == ContactModelFlatJoint::getIndex()) {
                    const ContactModelFlatJoint *in = dynamic_cast<const ContactModelFlatJoint*>(mcm);
                    maxgap = std::max<double>(maxgap,in->gap().x()- mc->getGap());
                }
            }
            br = 1.0 / br - 0.5*maxgap;
            const IContactMechanical *mc = convert_getcast<IContactMechanical>(con);
            pos->push_back(convert_getcast<IPieceMechanical>(mc->getEnd2())->getPosition());
            rad->push_back(br);
            val->push_back(mc->getEnd2()->getIThing()->getID());
        }
    }
#ifdef THREED
    void ContactModelFlatJoint::getDiskList(const IContact *con,std::vector<DVect> *pos,std::vector<DVect> *normal,std::vector<double> *radius,std::vector<double> *val) {
        assert(pos);
        assert(normal);
        assert(radius);
        assert(val);
        if (!orientProps_)
            return;
        // plot the contact plane right in the middle of the 2 normals
        double rad = fj_rmul()*rmin();
        DVect axis1 = orientProps_->orient1_.rotate(orientProps_->origNormal_);
        DVect axis2 = orientProps_->orient2_.rotate(orientProps_->origNormal_);
        DVect norm = ((axis1.unit()+axis2.unit())*0.5).unit();
        pos->push_back(con->getPosition());
        normal->push_back(norm);
        radius->push_back(rad);
        const IContactMechanical *mc = convert_getcast<IContactMechanical>(con);
        val->push_back(mc->getLocalForce().mag());
    }
#endif
    void ContactModelFlatJoint::getCylinderList(const IContact *con,std::vector<DVect> *bot,std::vector<DVect> *top,std::vector<double> *radlow,std::vector<double> *radhi,std::vector<double> *val) {
        assert(bot);
        assert(top);
        assert(radlow);
        assert(radhi);
        assert(val);
        if (!orientProps_)
            return;
        const IContactMechanical *mc = convert_getcast<IContactMechanical>(con);
        double br = mc->getEnd1Curvature().y(), br2 = mc->getEnd2Curvature().y();
        if (userArea_) {
#ifdef THREED
            br = std::sqrt(userArea_ / dPi);
#else
            br = userArea_ / 2.0;
#endif        
            br = 1. / br;
            br2 = br;
        }
        double cgap = mc->getGap();
        if (br > 0 && br2 > 0) {
            br = 1.0 / br;
            br2 = 1.0 / br2;
            double rad = fj_rmul()*rmin();
            DVect bp = convert_getcast<IPieceMechanical>(mc->getEnd1())->getPosition();
            DVect axis = orientProps_->orient1_.rotate(orientProps_->origNormal_);
            bot->push_back(axis.unit()*(br-0.5*(gap().x()- cgap))+bp);
            top->push_back(bp);
            radlow->push_back(rad);
            radhi->push_back(0.0);
            val->push_back(mc->getEnd1()->getIThing()->getID());
            bp = convert_getcast<IPieceMechanical>(mc->getEnd2())->getPosition();
            axis = orientProps_->orient2_.rotate(orientProps_->origNormal_);
            bot->push_back(axis.unit()*(br2-0.5*(gap().x()-cgap))*(-1.0)+bp);
            top->push_back(bp);
            radlow->push_back(rad);
            radhi->push_back(0.0);
            val->push_back(mc->getEnd2()->getIThing()->getID());
        }
    }
    DVect ContactModelFlatJoint::getForce(const IContactMechanical *) const {
        DVect ret(fj_f_);
        return ret;
    }
    DAVect ContactModelFlatJoint::getMomentOn1(const IContactMechanical *c) const {
        DVect force = getForce(c);
        DAVect ret(fj_m_);
        c->updateResultingTorqueOn1Local(force,&ret);
        return ret;
    }
    DAVect ContactModelFlatJoint::getMomentOn2(const IContactMechanical *c) const {
        DVect force = getForce(c);
        DAVect ret(fj_m_);
        c->updateResultingTorqueOn2Local(force,&ret);
        return ret;
    }
} // namespace itascaxd
// EoF
 | 
| Was this helpful? ... | PFC © 2021, Itasca | Updated: Feb 25, 2024 |