Creep Constitutive Models
Introduction
This FLAC3D option can be used to simulate the behavior of materials that exhibit creep (i.e., time-dependent material behavior). Creep models have been implemented in FLAC3D. These include the following:
- Maxwell model — A classical viscoelastic model known as the Maxwell substance.
- Burgers model — A classical viscoelastic model known as the Burgers substance, composed of a Kelvin model and a Maxwell model.
- Power model — A two-component power law model used for mining applications (e.g., salt or potash mining).
- WIPP model — A reference creep model commonly used in thermomechanical analyses associated with studies for the underground isolation of nuclear waste in salt.
- Burgers-Mohr model — A viscoplastic model combining the Burgers model and the Mohr-Coulomb model.
- Power-Mohr model — A viscoplastic model combining the two-component power model and the Mohr-Coulomb model.
- Power-Ubiqitous mdoel — A viscoplastic model combining the two-component power model and the ubiquitous-joint model.
- WIPP-Drucker model — A viscoplastic model combining the WIPP model and the Drucker-Prager model.
- WIPP-Salt model — A viscoplastic model modified from the WIPP model; includes volumetric and deviatoric compaction behavior for salt-like materials.
The models are presented in order of increasing complexity.
In addition, it is also possible for users to write their own creep constitutive models using the DLL user-defined models option described in Writing New Constitutive Models.
- Description of Creep Constitutive Models
- Solving Creep Problems with FLAC3D
- Input Instructions for Creep Modeling
- Verification and Example Problems
- Maxwell/Kelvin/Burgers Model: Parallel-Plate Viscometer
- WIPP-Type Models: Parallel-Plate Viscometer
- Power Model: Cylindrical Cavity
- Power-Mohr Model: Cylindrical Cavity
- WIPP Model: Cylindrical Cavity
- Power Model: Spherical Cavity
- Maxwell Model: Oedometer Test
- Kelvin Model: Oedometer Test
- Maxwell/Burgers Model: Compression Test
- Burgers-Mohr/Power-Mohr Model: Loading/Unloading Compression Test
- WIPP-Drucker Model: Comparison with Drucker-Prager Model
- WIPP-Drucker Model: Compression Test Showing Localization
- WIPP-Salt Model: Hydrostatic Compression Test
- WIPP-Salt Model: Shear Compression Test
- References
Was this helpful? ... | PFC 6.0 © 2019, Itasca | Updated: Nov 19, 2021 |